1. Stratified Morse Theory.- 2. The Topology of Complex Analytic Varieties and the Lefschetz Hyperplane Theorem.- I. Morse Theory of Whitney Stratified Spaces.- 1. Whitney Stratifications and Subanalytic Sets.- 2. Morse Functions and Nondepraved Critical Points.- 3. Dramatis Personae and the Main Theorem.- 4. Moving the Wall.- 5. Fringed Sets.- 6. Absence of Characteristic Covectors: Lemmas for Moving the Wall.- 7. Local, Normal, and Tangential Morse Data are Well Defined.- 8. Proof of the Main Theorem.- 9. Relative Morse Theory.- 10. Nonproper Morse Functions.- 11. Relative Morse Theory of Nonproper Functions.- 12. Normal Morse Data of Two Morse Functions.- II. Morse Theory of Complex Analytic Varieties.- 0. Introduction.- 1. Statement of Results.- 2. Normal Morse Data for Complex Analytic Varieties.- 3. Homotopy Type of the Morse Data.- 4. Morse Theory of the Complex Link.- 5. Proof of the Main Theorems.- 6. Morse Theory and Intersection Homology.- 7. Connectivity Theorems for q-Defective Pairs.- 8. Counterexamples.- III. Complements of Affine Subspaces.- 0. Introduction.- 1. Statement of Results.- 2. Geometry of the Order Complex.- 3. Morse Theory of ?n.- 4. Proofs of Theorems B, C, and D.- 5. Examples.