40,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
20 °P sammeln
  • Broschiertes Buch

Wood is a naturally growing material used from ages, but the applications for a single wood piece are limited by the shape and girth of the tree from where the piece is derived. Assembling wood pieces together enables working around this issue. Development in the last 10 years have highlighted the possibility to weld wood instead of the more classical mechanical fastener or polymeric adhesive already known as bonding techniques. While offering high processing speed and ecological advantages, past research have reported poor water resistance of the welded joint. Furthermore, high scatter of the…mehr

Produktbeschreibung
Wood is a naturally growing material used from ages, but the applications for a single wood piece are limited by the shape and girth of the tree from where the piece is derived. Assembling wood pieces together enables working around this issue. Development in the last 10 years have highlighted the possibility to weld wood instead of the more classical mechanical fastener or polymeric adhesive already known as bonding techniques. While offering high processing speed and ecological advantages, past research have reported poor water resistance of the welded joint. Furthermore, high scatter of the mechanical properties and a lack of quantitative dependence with moisture content prevent performing accurate prediction regarding the joint failure. The aim of this work is to investigate the fracture behavior of the welded joint in a range of moisture content below the fibre saturation point. Combined experimental and numerical work are use to characterize the effects of moisture content and mixed mode loadings and a finite element model is suggested to predict crack propagation in the welded joint.
Autorenporträt
Holding a PhD in Material Science and Technologies, Martin has been active for several years in applied research, in the frame of the Institute for Material and Wood Technologies (Bern University of Applied Sciences). His fields of expertise include Bio based composites, FEM and mechanics of materials.