As the shift from the Metal Age progresses, materials engineers and materials scientists seek new analytical and design methods to create stronger and more reliable materials. Based on extensive research and developmental work done at the author's multi-disciplinary material laboratory, this graduate-level and professional reference addresses the relationship between fracture mechanisms (macroscale) and the microscopic, with the goal of explaining macroscopic fracture behavior based on a microscopic fracture mechanism. A careful fusion of mechanics and materials science, this text and…mehr
As the shift from the Metal Age progresses, materials engineers and materials scientists seek new analytical and design methods to create stronger and more reliable materials. Based on extensive research and developmental work done at the author's multi-disciplinary material laboratory, this graduate-level and professional reference addresses the relationship between fracture mechanisms (macroscale) and the microscopic, with the goal of explaining macroscopic fracture behavior based on a microscopic fracture mechanism. A careful fusion of mechanics and materials science, this text and monograph systematically considers an array of materials, from metals through ceramics and polymers, and demonstrates lab-tested strategies to develop desirable high-temperature materials for technological applications. Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Toshiro Kobayashi, University of Technology, Toyohashi, Japan
Inhaltsangabe
1 Introduction.- 1.1 Development of Materials and their Characteristics.- 1.2 Fracture and Damage.- 1.3 Rise of Fracture Mechanics and Strengthening and Toughening.- 2 Basic Concepts of Fracture Mechanics.- 2.1 Fracture Toughness.- 2.2 Elastic-Plastic Fracture Mechanics.- 2.3 Measurement of Fracture Toughness.- 2.4 Application of Fracture Toughness.- 3 Principles of Strength and Toughness.- 3.1 Classical Fracture Theory.- 3.2 Microstructure and Fracture Mechanism.- 3.3 Inexpensive Toughness Evaluation Method-Instrumented Charpy Impact Test.- 3.4 Specimen Size Effect and J-Q Theory.- 4 Steels.- 4.1 Solid Phase Transformation in Steels.- 4.2 Correlations among Strength, Fracture and Microstructures.- 4.3 Strengthening and Toughening of Practical Steels.- 4.4 Degradation in Steels.- 4.5 Strength and Fracture of Carburized Steel.- 5 Ductile Cast Iron.- 5.1 Fracture Mechanism in Ductile Cast Iron.- 5.2 Evaluation of Fracture Toughness.- 5.3 Influence of Microstructure on Fracture Toughness.- 5.4 Strengthening and Toughening of Ductile Cast Iron.- 5.5 Fatigue Characteristics of Ductile Cast Iron.- 6 Wrought Aluminum Alloys.- 6.1 Aluminum Alloys and their Features at Deformation.- 6.2 Microstructure and the Fracture Mechanism.- 6.3 Ductile Fracture Details.- 6.4 Testing Methods for Fracture Toughness of Aluminum Alloys-R Curves Method.- 6.5 Toughness of Aluminum Alloys and the Metallurgical Factors.- 7 Cast Aluminum Alloys.- 7.1 Aluminum Alloy Casting and Solidification.- 7.2 Solidification Microstructure and Fracture Toughness.- 7.3 Fatigue Characteristics.- 8 Metal Matrix Composites.- 8.1 Key Points of Composite Materials.- 8.2 General Deformation and Fracture Mode.- 8.3 Improvement of Fracture Characteristics by Controlling MMC Microstructure.- 8.4 Fatigue FractureBehavior.- 9 Titanium Alloys.- 9.1 Mechanical Characteristics of Titanium Alloys.- 9.2 Influence of Microstructure on Fracture Toughness.- 9.3 Micromechanism of Crack Initiation and Crack Propagation.- 9.4 Embrittlement and Strengthening of Titanium Alloys by Hydrogen.- 9.5 Strain Induced Transformation and Mechanical Properties.- 10 Intermetallic Compounds.- 10.1 Application of Fracture Mechanics Testing.- 10.2 Influence of Alloying.- 10.3 Influence of Microstructure Control.- 10.4 Environmental Embrittlement.- 11 Ceramics.- 11.1 Characteristics of Strength and Toughness in Ceramics.- 11.2 Evaluation Methods for Toughness.- 12 Polymers.- 12.1 Characteristics and Deformation Mechanisms of Polymers.- 12.2 Mechanical Properties of Polymers.- SI Units and Conversion Table.
1 Introduction.- 1.1 Development of Materials and their Characteristics.- 1.2 Fracture and Damage.- 1.3 Rise of Fracture Mechanics and Strengthening and Toughening.- 2 Basic Concepts of Fracture Mechanics.- 2.1 Fracture Toughness.- 2.2 Elastic-Plastic Fracture Mechanics.- 2.3 Measurement of Fracture Toughness.- 2.4 Application of Fracture Toughness.- 3 Principles of Strength and Toughness.- 3.1 Classical Fracture Theory.- 3.2 Microstructure and Fracture Mechanism.- 3.3 Inexpensive Toughness Evaluation Method-Instrumented Charpy Impact Test.- 3.4 Specimen Size Effect and J-Q Theory.- 4 Steels.- 4.1 Solid Phase Transformation in Steels.- 4.2 Correlations among Strength, Fracture and Microstructures.- 4.3 Strengthening and Toughening of Practical Steels.- 4.4 Degradation in Steels.- 4.5 Strength and Fracture of Carburized Steel.- 5 Ductile Cast Iron.- 5.1 Fracture Mechanism in Ductile Cast Iron.- 5.2 Evaluation of Fracture Toughness.- 5.3 Influence of Microstructure on Fracture Toughness.- 5.4 Strengthening and Toughening of Ductile Cast Iron.- 5.5 Fatigue Characteristics of Ductile Cast Iron.- 6 Wrought Aluminum Alloys.- 6.1 Aluminum Alloys and their Features at Deformation.- 6.2 Microstructure and the Fracture Mechanism.- 6.3 Ductile Fracture Details.- 6.4 Testing Methods for Fracture Toughness of Aluminum Alloys-R Curves Method.- 6.5 Toughness of Aluminum Alloys and the Metallurgical Factors.- 7 Cast Aluminum Alloys.- 7.1 Aluminum Alloy Casting and Solidification.- 7.2 Solidification Microstructure and Fracture Toughness.- 7.3 Fatigue Characteristics.- 8 Metal Matrix Composites.- 8.1 Key Points of Composite Materials.- 8.2 General Deformation and Fracture Mode.- 8.3 Improvement of Fracture Characteristics by Controlling MMC Microstructure.- 8.4 Fatigue FractureBehavior.- 9 Titanium Alloys.- 9.1 Mechanical Characteristics of Titanium Alloys.- 9.2 Influence of Microstructure on Fracture Toughness.- 9.3 Micromechanism of Crack Initiation and Crack Propagation.- 9.4 Embrittlement and Strengthening of Titanium Alloys by Hydrogen.- 9.5 Strain Induced Transformation and Mechanical Properties.- 10 Intermetallic Compounds.- 10.1 Application of Fracture Mechanics Testing.- 10.2 Influence of Alloying.- 10.3 Influence of Microstructure Control.- 10.4 Environmental Embrittlement.- 11 Ceramics.- 11.1 Characteristics of Strength and Toughness in Ceramics.- 11.2 Evaluation Methods for Toughness.- 12 Polymers.- 12.1 Characteristics and Deformation Mechanisms of Polymers.- 12.2 Mechanical Properties of Polymers.- SI Units and Conversion Table.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497