- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Im Band 2 der Strukturdynamik werden kontinuierliche Schwinger und numerische Verfahren zu ihrer Diskretisierung behandelt. In Spezialfällen, die dann aber prinzipielle Einsichten ermöglichen, gelingt eine analytische Lösung der Bewegungsgleichungen. Die jedoch in den meisten Fällen notwendigen Näherungsverfahren (Übertragungsmatrizen, Rayleigh-Ritz, Methode der finiten Elemente) werden auch erläutert und anhand von Beispielen aus der Ingenieurpraxis illustriert. Das Buch wurde als Lehrbuch für Hochschulen und Fachhochschulen konzipiert, eignet sich aber auch zum Selbststudium für Ingenieure in Forschung und Industrie.…mehr
Andere Kunden interessierten sich auch für
- Robert GaschStrukturdynamik64,99 €
- Josef BettenFinite Elemente für Ingenieure 274,99 €
- Kai WillnerKontinuums- und Kontaktmechanik159,99 €
- Ralf GreveKontinuumsmechanik79,99 €
- Wilfried BeckerMechanik elastischer Körper und Strukturen49,99 €
- Hans Albert RichardBiomechanik44,99 €
- Martin PrechtlMathematische Dynamik39,99 €
-
-
-
Im Band 2 der Strukturdynamik werden kontinuierliche Schwinger und numerische Verfahren zu ihrer Diskretisierung behandelt. In Spezialfällen, die dann aber prinzipielle Einsichten ermöglichen, gelingt eine analytische Lösung der Bewegungsgleichungen. Die jedoch in den meisten Fällen notwendigen Näherungsverfahren (Übertragungsmatrizen, Rayleigh-Ritz, Methode der finiten Elemente) werden auch erläutert und anhand von Beispielen aus der Ingenieurpraxis illustriert. Das Buch wurde als Lehrbuch für Hochschulen und Fachhochschulen konzipiert, eignet sich aber auch zum Selbststudium für Ingenieure in Forschung und Industrie.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-50771-0
- 1989
- Seitenzahl: 356
- Erscheinungstermin: 28. September 1989
- Deutsch
- Abmessung: 242mm x 170mm x 20mm
- Gewicht: 500g
- ISBN-13: 9783540507710
- ISBN-10: 354050771X
- Artikelnr.: 03813476
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-50771-0
- 1989
- Seitenzahl: 356
- Erscheinungstermin: 28. September 1989
- Deutsch
- Abmessung: 242mm x 170mm x 20mm
- Gewicht: 500g
- ISBN-13: 9783540507710
- ISBN-10: 354050771X
- Artikelnr.: 03813476
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
1 Einleitung.- 2 Analytische Lösungen einfacher schwingender Kontinua.- 2.1 Einleitung.- 2.2 Aufstellung und Lösung der Bewegungsdifferentialgleichung des schubstarren biegeelastischen Balkens.- 2.3 Lösung der Bewegungsdifferentialgleichung bei harmonischer Erregung-eingeschwungener Zustand.- 2.4 Der biegeelastische Balken mit Zusatzeffekten.- 2.5 Ebene Flächentragwerke.- 2.6 Übungsaufgaben.- 3 Geschlossene Lösungen für Bewegungsvorgänge von Kontinua - Die Behandlung als modal entkoppeltes System.- 3.1 Einleitung.- 3.2 Orthogonalitätsbeziehungen für Balken mit einfachen Randbedingungen.- 3.3 Freie Schwingungen: Die Anpassung an die Anfangsbedingungen durch modales Vorgehen.- 3.4 Lösung für allgemeine, transiente Erregung.- 3.5 Harmonische Erregung-Resonanzverhalten in modaler Darstellung.- 3.6 Dämpfungseinfluß.- 3.7 Bilanz zur modalen Betrachtungsweise und Verallgemeinerung.- 3.8 Übungsaufgaben.- 4 Das Verfahren der Übertragungsmatrizen.- 4.1 Einleitung.- 4.2 Einige Übertragungsmatrizen.- 4.3 Das Übertragungsschema zur Eigenfrequenz- und Eigenformberechnung.- 4.4 Weiche, steife und starre Zwischenstützen.- 4.5 Erzwungene, periodische Schwingungen.- 4.6 Harmonische Erregung in einer kettenförmigen Struktur mit Grenzen im Unendlichen.- 4.7 Gesamtgleichungssystem und verzweigte Strukturen.- 4.8 Numerische Schwierigkeiten.- 4.9 Vorzüge und Grenzen des Übertragungsmatrizenverfahrens.- 4.10 Übungsaufgaben.- 5 Energieformulierungen als Grundlage für Näherungsverfahren.- 5.1 Das Prinzip der virtuellen Verrückungen für Durchlaufträger und ebene Rahmentragwerke.- 5.2 Ableitung der Orthogonalitätsrelationen mit Hilfe des Prinzips der virtuellen Verrückungen.- 5.3 Prinzip der virtuellen Verrückungen für andere Kontinua.- 5.4 Übungsaufgaben.- 6Der Rayleigh-Quotient und das Ritzsche Verfahren.- 6.1 Der Rayleigh-Quotient.- 6.2 Das Ritzsche Verfahren zur Eigenschwingungsberechnung.- 6.3 Übungsaufgaben.- 7 Die Methode der finiten Elemente.- 7.1 Einleitung.- 7.2 Methode der finiten Elemente für Durchlaufträger (Stabzüge).- 7.3 Methode der finiten Elemente für ebene und räumliche Rahmentragwerke.- 7.4 Elementmatrizen für Stäbe mit Schubweichheit, Drehmassenbelegung und Vorspannung.- 7.5 Finite-Element-Verfahren für Platten.- 7.6 Finite-Element-Verfahren auf der Grundlage gemischt-hybrider Arbeitsausdrücke.- 7.7 Übungsaufgaben.- 8 Ausnutzung von Symmetrieeigenschaften.- 8.1 Ein einfaches Beispiel.- 8.2 Allgemeine Regeln für die Ausnutzung von Symmetrieeigenschaften bei dreidimensionalen Strukturen.- 8.3 Berechnung der Eigenschwingungen eines Radsatzes bei Ausnutzung von Symmetrieeigenschaften.- 8.4 Übungsaufgaben.- 9 Reduktion der Zahl der Freiheitsgrade.- 9.1 Der Formalismus der Reduktion.- 9.2 Statische Kondensation.- 9.3 Die modale Kondensation unter Verwendung eines benachbarten, konservativen Hilfssystems.- 9.4 Gemischte statische und modale Kondensation zur Beibehaltung wichtiger physikalischer Freiheitsgrade im reduzierten System.- 9.5 Vergleich der drei Reduktionsverfahren.- 9.6 Kondensation bei Systemen mit lokalen Nichtlinearitäten.- 9.7 Übungsaufgaben.- 10 Substrukturtechniken.- 10.1 Vorbemerkung.- 10.2 Modale Synthese bei Verwendung von Substrukturen, die an den Koppelstellen gefesselt sind.- 10.3 Ergebnisse der Berechnung eines realen Rotor-Fundament-Systems.- 10.4 Modale Synthese bei Verwendung von Substrukturen mit freien Koppelstellen.- 10.5 Genauigkeit und Konvergenzverhalten bei der modalen Synthese.- 10.6 Übersicht über die modalen Syntheseverfahren.- 10.7 Übungsaufgaben.- 11Bewegungsgleichungen von rotierenden elastischen Strukturen.- 11.1 Bewegungsgleichungen des rotierenden Punktmassenmodells.- 11.2 Bewegungsgleichungen der rotierenden Struktur mit kontinuierlicher Massenverteilung-konsistente Modellierung.- 11.3 Modale Kondensation zur Reduktion der Zahl der Freiheitsgrade der rotierenden Struktur.- 11.4 Bewegungsgleichungen von gekoppelten rotierenden und nicht rotierenden Strukturen.- 11.5 Übungsaufgaben.- 12 Stabilität von periodisch zeitvarianten Systemen - Parametererregung.- 12.1 Vorbetrachtung: Pendel mit bewegtem Aufhängepunkt; Stabilität der Mathieuschen Differentialgleichungen.- 12.2 Parameterresonanzen bei Mehr-Freiheitsgradsystemen.- 12.3 Stabilitätsuntersuchung nach Floquet.- 12.4 Stabilitätsuntersuchung nach Hill.- 12.5 Kleiner Vergleich der Stabilitätsuntersuchungen nach Floquet und Hill.- 13 Lösungen zu den Übungsaufgaben.- Symbole und Bezeichnungen.- Literatur.
1 Einleitung.- 2 Analytische Lösungen einfacher schwingender Kontinua.- 2.1 Einleitung.- 2.2 Aufstellung und Lösung der Bewegungsdifferentialgleichung des schubstarren biegeelastischen Balkens.- 2.3 Lösung der Bewegungsdifferentialgleichung bei harmonischer Erregung-eingeschwungener Zustand.- 2.4 Der biegeelastische Balken mit Zusatzeffekten.- 2.5 Ebene Flächentragwerke.- 2.6 Übungsaufgaben.- 3 Geschlossene Lösungen für Bewegungsvorgänge von Kontinua - Die Behandlung als modal entkoppeltes System.- 3.1 Einleitung.- 3.2 Orthogonalitätsbeziehungen für Balken mit einfachen Randbedingungen.- 3.3 Freie Schwingungen: Die Anpassung an die Anfangsbedingungen durch modales Vorgehen.- 3.4 Lösung für allgemeine, transiente Erregung.- 3.5 Harmonische Erregung-Resonanzverhalten in modaler Darstellung.- 3.6 Dämpfungseinfluß.- 3.7 Bilanz zur modalen Betrachtungsweise und Verallgemeinerung.- 3.8 Übungsaufgaben.- 4 Das Verfahren der Übertragungsmatrizen.- 4.1 Einleitung.- 4.2 Einige Übertragungsmatrizen.- 4.3 Das Übertragungsschema zur Eigenfrequenz- und Eigenformberechnung.- 4.4 Weiche, steife und starre Zwischenstützen.- 4.5 Erzwungene, periodische Schwingungen.- 4.6 Harmonische Erregung in einer kettenförmigen Struktur mit Grenzen im Unendlichen.- 4.7 Gesamtgleichungssystem und verzweigte Strukturen.- 4.8 Numerische Schwierigkeiten.- 4.9 Vorzüge und Grenzen des Übertragungsmatrizenverfahrens.- 4.10 Übungsaufgaben.- 5 Energieformulierungen als Grundlage für Näherungsverfahren.- 5.1 Das Prinzip der virtuellen Verrückungen für Durchlaufträger und ebene Rahmentragwerke.- 5.2 Ableitung der Orthogonalitätsrelationen mit Hilfe des Prinzips der virtuellen Verrückungen.- 5.3 Prinzip der virtuellen Verrückungen für andere Kontinua.- 5.4 Übungsaufgaben.- 6Der Rayleigh-Quotient und das Ritzsche Verfahren.- 6.1 Der Rayleigh-Quotient.- 6.2 Das Ritzsche Verfahren zur Eigenschwingungsberechnung.- 6.3 Übungsaufgaben.- 7 Die Methode der finiten Elemente.- 7.1 Einleitung.- 7.2 Methode der finiten Elemente für Durchlaufträger (Stabzüge).- 7.3 Methode der finiten Elemente für ebene und räumliche Rahmentragwerke.- 7.4 Elementmatrizen für Stäbe mit Schubweichheit, Drehmassenbelegung und Vorspannung.- 7.5 Finite-Element-Verfahren für Platten.- 7.6 Finite-Element-Verfahren auf der Grundlage gemischt-hybrider Arbeitsausdrücke.- 7.7 Übungsaufgaben.- 8 Ausnutzung von Symmetrieeigenschaften.- 8.1 Ein einfaches Beispiel.- 8.2 Allgemeine Regeln für die Ausnutzung von Symmetrieeigenschaften bei dreidimensionalen Strukturen.- 8.3 Berechnung der Eigenschwingungen eines Radsatzes bei Ausnutzung von Symmetrieeigenschaften.- 8.4 Übungsaufgaben.- 9 Reduktion der Zahl der Freiheitsgrade.- 9.1 Der Formalismus der Reduktion.- 9.2 Statische Kondensation.- 9.3 Die modale Kondensation unter Verwendung eines benachbarten, konservativen Hilfssystems.- 9.4 Gemischte statische und modale Kondensation zur Beibehaltung wichtiger physikalischer Freiheitsgrade im reduzierten System.- 9.5 Vergleich der drei Reduktionsverfahren.- 9.6 Kondensation bei Systemen mit lokalen Nichtlinearitäten.- 9.7 Übungsaufgaben.- 10 Substrukturtechniken.- 10.1 Vorbemerkung.- 10.2 Modale Synthese bei Verwendung von Substrukturen, die an den Koppelstellen gefesselt sind.- 10.3 Ergebnisse der Berechnung eines realen Rotor-Fundament-Systems.- 10.4 Modale Synthese bei Verwendung von Substrukturen mit freien Koppelstellen.- 10.5 Genauigkeit und Konvergenzverhalten bei der modalen Synthese.- 10.6 Übersicht über die modalen Syntheseverfahren.- 10.7 Übungsaufgaben.- 11Bewegungsgleichungen von rotierenden elastischen Strukturen.- 11.1 Bewegungsgleichungen des rotierenden Punktmassenmodells.- 11.2 Bewegungsgleichungen der rotierenden Struktur mit kontinuierlicher Massenverteilung-konsistente Modellierung.- 11.3 Modale Kondensation zur Reduktion der Zahl der Freiheitsgrade der rotierenden Struktur.- 11.4 Bewegungsgleichungen von gekoppelten rotierenden und nicht rotierenden Strukturen.- 11.5 Übungsaufgaben.- 12 Stabilität von periodisch zeitvarianten Systemen - Parametererregung.- 12.1 Vorbetrachtung: Pendel mit bewegtem Aufhängepunkt; Stabilität der Mathieuschen Differentialgleichungen.- 12.2 Parameterresonanzen bei Mehr-Freiheitsgradsystemen.- 12.3 Stabilitätsuntersuchung nach Floquet.- 12.4 Stabilitätsuntersuchung nach Hill.- 12.5 Kleiner Vergleich der Stabilitätsuntersuchungen nach Floquet und Hill.- 13 Lösungen zu den Übungsaufgaben.- Symbole und Bezeichnungen.- Literatur.