Mitchal Dichter
Student Solutions Manual for Nonlinear Dynamics and Chaos, 2nd edition
Mitchal Dichter
Student Solutions Manual for Nonlinear Dynamics and Chaos, 2nd edition
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This official Student Solutions Manual includes solutions to the odd-numbered exercises featured in the second edition of Steven Strogatz's classic text Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering.
Andere Kunden interessierten sich auch für
- Steven H. StrogatzNonlinear Dynamics and Chaos81,99 €
- Steven H. StrogatzNonlinear Dynamics and Chaos164,99 €
- Steven H StrogatzNonlinear Dynamics and Chaos164,99 €
- Steven H StrogatzNonlinear Dynamics and Chaos64,99 €
- Ronald T. KneuselThe Art of Randomness33,99 €
- Robert L. DevaneyA First Course In Chaotic Dynamical Systems40,99 €
- Tim Palmer (Ro Royal Society Research Professor in Climate PhysicsThe Primacy of Doubt13,99 €
-
-
-
This official Student Solutions Manual includes solutions to the odd-numbered exercises featured in the second edition of Steven Strogatz's classic text Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Inc
- Seitenzahl: 404
- Erscheinungstermin: 1. Mai 1988
- Englisch
- Abmessung: 280mm x 216mm x 22mm
- Gewicht: 974g
- ISBN-13: 9780813350547
- ISBN-10: 0813350549
- Artikelnr.: 44687758
- Verlag: Taylor & Francis Inc
- Seitenzahl: 404
- Erscheinungstermin: 1. Mai 1988
- Englisch
- Abmessung: 280mm x 216mm x 22mm
- Gewicht: 974g
- ISBN-13: 9780813350547
- ISBN-10: 0813350549
- Artikelnr.: 44687758
Mitchal Dichter
CONTENTS 2: Flows on the Line 2.1 A Geometric Way of Thinking 2.2 Fixed
Points and Stability 2.3 Population Growth 2.4 Linear Stability Analysis
2.5 Existence and Uniqueness 2.6 Impossibility of Oscillations 2.7
Potentials 2.8 Solving Equations on the Computer 3: Bifurcations 3.1
Saddle-Node Bifurcation 3.2 Transcritical Bifurcation 3.3 Laser Threshold
3.4 Pitchfork Bifurcation 3.5 Overdamped Bead on a Rotating Hoop 3.6
Imperfect Bifurcations and Catastrophes 3.7 Insect Outbreak 4: Flows on the
Circle 4.1 Examples and Definitions 4.2 Uniform Oscillator 4.3 Nonuniform
Oscillator 4.4 Overdamped Pendulum 4.5 Fireflies 4.6 Superconducting
Josephson Junctions 5: Linear Systems 5.1 Definitions and Examples 5.2
Classification of Linear Systems 5.3 Love Affairs 6 Phase Plane 6.1 Phase
Portraits 6.2 Existence, Uniqueness, and Topological Consequences 6.3 Fixed
Points and Linearization 6.4 Rabbits versus Sheep 6.5 Conservative Systems
6.6 Reversible Systems 6.7 Pendulum 6.8 Index Theory 7: Limit Cycles 7.1
Examples 7.2 Ruling Out Closed Orbits 7.3 Poincar'e-Bendixson Theorem 7.4
Li'enard Systems 7.5 Relaxation Oscillations 7.6 Weakly Nonlinear
Oscillators 8: Bifurcations Revisited 8.1 Saddle-Node, Transcritical, and
Pitchfork Bifurcations 8.2 Hopf Bifurcations 8.3 Oscillating Chemical
Reactions 8.4 Global Bifurcations of Cycles 8.5 Hysteresis in the Driven
Pendulum and Josephson Junction 8.6 Coupled Oscillators and
Quasiperiodicity 8.7 Poincar'e Maps 9: Lorenz Equations 9.1 A Chaotic
Waterwheel 9.2 Simple Properties of the Lorenz Equations 9.3 Chaos on a
Strange Attractor 9.4 Lorenz Map 9.5 Exploring Parameter Space 9.6 Using
Chaos to Send Secret Messages 10: One-Dimensional Maps 10.1 Fixed Points
and Cobwebs 10.2 Logistic Map: Numerics 10.3 Logistic Map: Analysis 10.4
Periodic Windows 10.5 Liapunov Exponent 10.6 Universality and Experiments
10.7 Renormalization 11: Fractals 11.1 Countable and Uncountable Sets 11.2
Cantor Set 11.3 Dimension of Self-Similar Fractals 11.4 Box D
Points and Stability 2.3 Population Growth 2.4 Linear Stability Analysis
2.5 Existence and Uniqueness 2.6 Impossibility of Oscillations 2.7
Potentials 2.8 Solving Equations on the Computer 3: Bifurcations 3.1
Saddle-Node Bifurcation 3.2 Transcritical Bifurcation 3.3 Laser Threshold
3.4 Pitchfork Bifurcation 3.5 Overdamped Bead on a Rotating Hoop 3.6
Imperfect Bifurcations and Catastrophes 3.7 Insect Outbreak 4: Flows on the
Circle 4.1 Examples and Definitions 4.2 Uniform Oscillator 4.3 Nonuniform
Oscillator 4.4 Overdamped Pendulum 4.5 Fireflies 4.6 Superconducting
Josephson Junctions 5: Linear Systems 5.1 Definitions and Examples 5.2
Classification of Linear Systems 5.3 Love Affairs 6 Phase Plane 6.1 Phase
Portraits 6.2 Existence, Uniqueness, and Topological Consequences 6.3 Fixed
Points and Linearization 6.4 Rabbits versus Sheep 6.5 Conservative Systems
6.6 Reversible Systems 6.7 Pendulum 6.8 Index Theory 7: Limit Cycles 7.1
Examples 7.2 Ruling Out Closed Orbits 7.3 Poincar'e-Bendixson Theorem 7.4
Li'enard Systems 7.5 Relaxation Oscillations 7.6 Weakly Nonlinear
Oscillators 8: Bifurcations Revisited 8.1 Saddle-Node, Transcritical, and
Pitchfork Bifurcations 8.2 Hopf Bifurcations 8.3 Oscillating Chemical
Reactions 8.4 Global Bifurcations of Cycles 8.5 Hysteresis in the Driven
Pendulum and Josephson Junction 8.6 Coupled Oscillators and
Quasiperiodicity 8.7 Poincar'e Maps 9: Lorenz Equations 9.1 A Chaotic
Waterwheel 9.2 Simple Properties of the Lorenz Equations 9.3 Chaos on a
Strange Attractor 9.4 Lorenz Map 9.5 Exploring Parameter Space 9.6 Using
Chaos to Send Secret Messages 10: One-Dimensional Maps 10.1 Fixed Points
and Cobwebs 10.2 Logistic Map: Numerics 10.3 Logistic Map: Analysis 10.4
Periodic Windows 10.5 Liapunov Exponent 10.6 Universality and Experiments
10.7 Renormalization 11: Fractals 11.1 Countable and Uncountable Sets 11.2
Cantor Set 11.3 Dimension of Self-Similar Fractals 11.4 Box D
CONTENTS 2: Flows on the Line 2.1 A Geometric Way of Thinking 2.2 Fixed
Points and Stability 2.3 Population Growth 2.4 Linear Stability Analysis
2.5 Existence and Uniqueness 2.6 Impossibility of Oscillations 2.7
Potentials 2.8 Solving Equations on the Computer 3: Bifurcations 3.1
Saddle-Node Bifurcation 3.2 Transcritical Bifurcation 3.3 Laser Threshold
3.4 Pitchfork Bifurcation 3.5 Overdamped Bead on a Rotating Hoop 3.6
Imperfect Bifurcations and Catastrophes 3.7 Insect Outbreak 4: Flows on the
Circle 4.1 Examples and Definitions 4.2 Uniform Oscillator 4.3 Nonuniform
Oscillator 4.4 Overdamped Pendulum 4.5 Fireflies 4.6 Superconducting
Josephson Junctions 5: Linear Systems 5.1 Definitions and Examples 5.2
Classification of Linear Systems 5.3 Love Affairs 6 Phase Plane 6.1 Phase
Portraits 6.2 Existence, Uniqueness, and Topological Consequences 6.3 Fixed
Points and Linearization 6.4 Rabbits versus Sheep 6.5 Conservative Systems
6.6 Reversible Systems 6.7 Pendulum 6.8 Index Theory 7: Limit Cycles 7.1
Examples 7.2 Ruling Out Closed Orbits 7.3 Poincar'e-Bendixson Theorem 7.4
Li'enard Systems 7.5 Relaxation Oscillations 7.6 Weakly Nonlinear
Oscillators 8: Bifurcations Revisited 8.1 Saddle-Node, Transcritical, and
Pitchfork Bifurcations 8.2 Hopf Bifurcations 8.3 Oscillating Chemical
Reactions 8.4 Global Bifurcations of Cycles 8.5 Hysteresis in the Driven
Pendulum and Josephson Junction 8.6 Coupled Oscillators and
Quasiperiodicity 8.7 Poincar'e Maps 9: Lorenz Equations 9.1 A Chaotic
Waterwheel 9.2 Simple Properties of the Lorenz Equations 9.3 Chaos on a
Strange Attractor 9.4 Lorenz Map 9.5 Exploring Parameter Space 9.6 Using
Chaos to Send Secret Messages 10: One-Dimensional Maps 10.1 Fixed Points
and Cobwebs 10.2 Logistic Map: Numerics 10.3 Logistic Map: Analysis 10.4
Periodic Windows 10.5 Liapunov Exponent 10.6 Universality and Experiments
10.7 Renormalization 11: Fractals 11.1 Countable and Uncountable Sets 11.2
Cantor Set 11.3 Dimension of Self-Similar Fractals 11.4 Box D
Points and Stability 2.3 Population Growth 2.4 Linear Stability Analysis
2.5 Existence and Uniqueness 2.6 Impossibility of Oscillations 2.7
Potentials 2.8 Solving Equations on the Computer 3: Bifurcations 3.1
Saddle-Node Bifurcation 3.2 Transcritical Bifurcation 3.3 Laser Threshold
3.4 Pitchfork Bifurcation 3.5 Overdamped Bead on a Rotating Hoop 3.6
Imperfect Bifurcations and Catastrophes 3.7 Insect Outbreak 4: Flows on the
Circle 4.1 Examples and Definitions 4.2 Uniform Oscillator 4.3 Nonuniform
Oscillator 4.4 Overdamped Pendulum 4.5 Fireflies 4.6 Superconducting
Josephson Junctions 5: Linear Systems 5.1 Definitions and Examples 5.2
Classification of Linear Systems 5.3 Love Affairs 6 Phase Plane 6.1 Phase
Portraits 6.2 Existence, Uniqueness, and Topological Consequences 6.3 Fixed
Points and Linearization 6.4 Rabbits versus Sheep 6.5 Conservative Systems
6.6 Reversible Systems 6.7 Pendulum 6.8 Index Theory 7: Limit Cycles 7.1
Examples 7.2 Ruling Out Closed Orbits 7.3 Poincar'e-Bendixson Theorem 7.4
Li'enard Systems 7.5 Relaxation Oscillations 7.6 Weakly Nonlinear
Oscillators 8: Bifurcations Revisited 8.1 Saddle-Node, Transcritical, and
Pitchfork Bifurcations 8.2 Hopf Bifurcations 8.3 Oscillating Chemical
Reactions 8.4 Global Bifurcations of Cycles 8.5 Hysteresis in the Driven
Pendulum and Josephson Junction 8.6 Coupled Oscillators and
Quasiperiodicity 8.7 Poincar'e Maps 9: Lorenz Equations 9.1 A Chaotic
Waterwheel 9.2 Simple Properties of the Lorenz Equations 9.3 Chaos on a
Strange Attractor 9.4 Lorenz Map 9.5 Exploring Parameter Space 9.6 Using
Chaos to Send Secret Messages 10: One-Dimensional Maps 10.1 Fixed Points
and Cobwebs 10.2 Logistic Map: Numerics 10.3 Logistic Map: Analysis 10.4
Periodic Windows 10.5 Liapunov Exponent 10.6 Universality and Experiments
10.7 Renormalization 11: Fractals 11.1 Countable and Uncountable Sets 11.2
Cantor Set 11.3 Dimension of Self-Similar Fractals 11.4 Box D