38,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
19 °P sammeln
  • Broschiertes Buch

Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both…mehr

Produktbeschreibung
Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of thiswork is the improvement of multiobjective evolutionary algorithms and their application to engineering problems.
Autorenporträt
A. A. Mosua obtained his PhD in in engineering mathematics from faculty of engineering, Menoufia University, Egypt. He is currently a Lecturer in the Basic Engineering Sciences, Faculty of Engineering, Menoufia University. His research interests are evolutionary multiobjective optimization, mathematical programming, artificial intelligence methods.