53,49 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Gebundenes Buch

La théorie classique des suites de Sturm fournit un algorithme pour déterminer le nombre de racines d'un polynôme à coefficients réels contenues dans un intervalle donné. L'objet principal de ce mémoire est de montrer qu'une généralisation adéquate de la théorie des suites de Sturm fournit entre autres choses:
une notion d'indice de Maslov pour un lacet algébrique de lagrangiens défini sur un anneau commutatif; | une démonstration du théorème fondamental de la K-théorie (algébrique) hermitienne, théorème dû à M. Karoubi; | une démonstration des théorèmes de périodicité de Bott
…mehr

Produktbeschreibung
La théorie classique des suites de Sturm fournit un algorithme pour déterminer le nombre de racines d'un polynôme à coefficients réels contenues dans un intervalle donné. L'objet principal de ce mémoire est de montrer qu'une généralisation adéquate de la théorie des suites de Sturm fournit entre autres choses:

  • une notion d'indice de Maslov pour un lacet algébrique de lagrangiens défini sur un anneau commutatif;
  • une démonstration du théorème fondamental de la K-théorie (algébrique) hermitienne, théorème dû à M. Karoubi;
  • une démonstration des théorèmes de périodicité de Bott (topologique), dans l'esprit des travaux de F. Latour;
  • un calcul du groupe K2 relatif, symplectique-linéaire, pour tous les anneaux commutatifs, dans l'esprit des travaux de R. Sharpe.


Le livre est dans la mesure du possible « self-contained » et élémentaire: il met essentiellement en oeuvre des arguments d'algèbre linéaire ou bilinéaire. Il présente une approche unifiée de l'indice de Maslov en termes de suites de Sturm et de formes quadratiques.