Ashwini K Nangia
Supramolecular Synthons in Crystal Engineering of Pharmaceutical Properties
Ashwini K Nangia
Supramolecular Synthons in Crystal Engineering of Pharmaceutical Properties
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This comprehensive resource skillfully consolidates Crystal Engineering, the design of organic solids, and Supramolecular Synthons (i.e. structural hydrogen bond units) to achieve desired Pharmaceutical Properties, including solubility, dissolution, bioavailability, permeability, particle size, tableting, hydration, and mechanical strength.
Andere Kunden interessierten sich auch für
- Irving Sucholeiki (ed.)High-Throughput Synthesis180,99 €
- Felix FranksFreeze-Drying of Pharmaceuticals and Biopharmaceuticals76,99 €
- Tony Kowalski (ed.)Calibration in the Pharmaceutical Laboratory127,99 €
- Brijesh KumarPhytochemistry of Plants of Genus Piper89,99 €
- Accurate Results in the Clinical Laboratory107,99 €
- Therapeutic Oligonucleotides217,99 €
- Leadership and Management in Pharmacy Practice180,99 €
-
-
-
This comprehensive resource skillfully consolidates Crystal Engineering, the design of organic solids, and Supramolecular Synthons (i.e. structural hydrogen bond units) to achieve desired Pharmaceutical Properties, including solubility, dissolution, bioavailability, permeability, particle size, tableting, hydration, and mechanical strength.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd (Sales)
- Seitenzahl: 182
- Erscheinungstermin: 1. Oktober 2024
- Englisch
- Abmessung: 234mm x 156mm x 13mm
- Gewicht: 458g
- ISBN-13: 9781032196114
- ISBN-10: 1032196114
- Artikelnr.: 70346664
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Taylor & Francis Ltd (Sales)
- Seitenzahl: 182
- Erscheinungstermin: 1. Oktober 2024
- Englisch
- Abmessung: 234mm x 156mm x 13mm
- Gewicht: 458g
- ISBN-13: 9781032196114
- ISBN-10: 1032196114
- Artikelnr.: 70346664
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Ashwini Nangia (born 1960) is a senior professor of chemistry at the University of Hyderabad, India. He completed his MSc from Indian Institute of Technology Kanpur (1983) and PhD from Yale University (1988). He joined the University of Hyderabad in 1989 and was promoted to professor in 2002 and to senior professor in 2019. His research interests in crystal engineering include polymorphs, cocrystals, salts, eutectics, and amorphous forms of drugs and pharmaceuticals. He has authored more than 350 research publications, with over 18,000 citations and an h-index of 70. He is a fellow of the three premier National Science Academies of India and Royal Society of Chemistry, London. He is a recipient of the prestigious JC Bose National Fellowship. He was director of Council of Scientific and Industrial Research-National Chemical Laboratory, Pune from March 2016 to November 2020, during which time he diversified his interests to flow chemistry and process intensification in crystallization.
Chapter 1 Introduction to Supramolecular Chemistry and Crystal Engineering 1.1 Introduction 1.2 Organic synthesis 1.3 Supramolecular chemistry 1.4 Crystal engineering 1.5 Hydrogen bonding 1.6 Space groups 1.7 Summary conclusions 1.8 References 1.9 Questions and thoughts 1.10 Additional reading Chapter 2 Crystal Engineering, Supramolecular Synthons, and Cocrystal Design 2.1 Introduction 2.2 Supramolecular synthons 2.3 Crystal engineering of pharmaceutical cocrystals 2.3.1 Cocrystals 2.3.2 Pharmaceutical cocrystals 2.4 Cocrystal design approaches 2.4.1 Hydrogen bond synthons 2.4.2
pKa rule 2.4.3 Computational methods 2.4.4 Molecular electrostatic potential surface energy 2.4.5 Hansen solubility parameter 2.5 Summary conclusions 2.6 References 2.7 Questions and thoughts Chapter 3 Pharmaceutical Solid-State Forms 3.1 Introduction 3.2 Pharmaceutical multi-component crystals 3.2.1 Drug salts and pharmaceutical cocrystals 3.2.2 Pharmaceutical cocrystals via crystal engineering 3.2.3 Coamorphous solids 3.2.4 Solid solutions and eutectics 3.2.5 Ionic liquids 3.2.6 Ionic cocrystals 3.2.7 Nanocrystalline drugs 3.2.8 Supramolecular gels of drugs 3.2.9 Salt
cocrystal continuum or hybrid quasi-state of proton 3.2.10 Cocrystal polymorphs 3.2.11 Ternary and higher organic cocrystals 3.3 Summary conclusions 3.4 References 3.5 Questions and thoughts Chapter 4 Design and Methodology of Pharmaceutical Cocrystals 4.1 Introduction 4.2 Complementarity between API and coformer 4.3 Preparation methods of cocrystals 4.3.1 Spray drying 4.3.2 Freeze drying 4.3.3 Hot melt extrusion 4.3.4 Rotary evaporator method 4.3.5 Vapor-assisted tumbling 4.4 Drug
drug cocrystals 4.5 Drug
nutraceutical cocrystals 4.6 Ternary and higher order cocrystals 4.7 Cocrystals of different stoichiometry 4.8 Zwitterionic cocrystals 4.9 Halogen-bonded pharmaceutical cocrystals 4.10 Characterization methods of cocrystals 4.11 Summary conclusions 4.12 References 4.13 Questions and thoughts Chapter 5 Applications of Pharmaceutical Cocrystals 5.1 Introduction 5.2 Bioavailability improvement 5.3 Hydration stability 5.4 Chemical degradation stability 5.5 Tableting 5.6 Mechanical properties 5.7 Phase diagram and solubility measurements 5.8 Permeability and plasma concentration 5.9 Spring and Parachute model 5.10 Summary conclusions 5.11 References 5.12 Questions and thoughts Chapter 6 Continuous Manufacturing of Cocrystals and Salts 6.1 Introduction 6.2 Batch and flow chemistry 6.3 Flow chemistry and pharmaceutical cocrystals manufacturing 6.4 Case studies of pharmaceutical cocrystals and salts 6.5 Continuous process technologies 6.6 Flow guide for the synthetic chemist 6.7 Summary conclusions 6.8 References 6.9 Questions and thoughts Chapter 7 Commercial Outlook of Pharmaceutical Cocrystals 7.1 Introduction 7.2 Present status 7.3 Patenting and regulatory aspects 7.4 Entresto® drug-drug cocrystal salt 7.5 Seglentis® US-FDA approval 7.6 Summary conclusions 7.7 References 7.8 Questions and thoughts Chapter 8 Controlling Polymorphism 8.1 Introduction 8.2 Definition and importance 8.3 Polymorphism and cocrystallization 8.4 Tailored additives to control crystal size and morphology 8.5 Summary conclusions 8.6 References 8.7 Questions and thoughts Chapter 9 Supramolecular Heterosynthon in High Bioavailability Drugs 9.1 Introduction 9.2 Common heterosynthons in drugs 9.3 Heterosynthon model for high bioavailability drugs 9.4 Models for permeability enhancement 9.5 Cocrystal drugs beyond the Rule of 5 9.6 Improving cell penetration by atom replacement 9.7 Summary conclusions 9.9 Questions and thoughts Chapter 10 Other Applications of Cocrystals 10.1 Introduction 10.2 Property engineering 10.3 Mechanochemistry 10.4 Energetic cocrystals 10.5 Summary conclusions 10.6 References 10.7 Questions and thoughts Chapter 11 AI ML ChatGPT in Chemistry 11.1 Introduction 11.2 Retrosynthetic reaction prediction 11.3 Medicinal molecules 11.4 MOFs and inorganic materials 11.5 Cocrystals 11.6 Summary conclusions 11.7 References 11.8 Questions and thoughts Chapter 12 3D Electron Diffraction 12.1 Introduction 12.2 Advantages of ED 12.3 Resurgence of ED 12.4 New pharmaceutical challenges solved by ED 12.5 Summary conclusions 12.6 References 12.7 Questions and thoughts Chapter 13 Challenges, Conclusions, and Future Directions 13.1 Introduction 13.2 Carboxamide
pyridine-N-oxide heterosynthon 13.3 Browsing the literature 13.4 Challenges in pharmaceutical cocrystal technology 13.5 Conclusions 13.6 References 13.7 Suggested reading Index
pKa rule 2.4.3 Computational methods 2.4.4 Molecular electrostatic potential surface energy 2.4.5 Hansen solubility parameter 2.5 Summary conclusions 2.6 References 2.7 Questions and thoughts Chapter 3 Pharmaceutical Solid-State Forms 3.1 Introduction 3.2 Pharmaceutical multi-component crystals 3.2.1 Drug salts and pharmaceutical cocrystals 3.2.2 Pharmaceutical cocrystals via crystal engineering 3.2.3 Coamorphous solids 3.2.4 Solid solutions and eutectics 3.2.5 Ionic liquids 3.2.6 Ionic cocrystals 3.2.7 Nanocrystalline drugs 3.2.8 Supramolecular gels of drugs 3.2.9 Salt
cocrystal continuum or hybrid quasi-state of proton 3.2.10 Cocrystal polymorphs 3.2.11 Ternary and higher organic cocrystals 3.3 Summary conclusions 3.4 References 3.5 Questions and thoughts Chapter 4 Design and Methodology of Pharmaceutical Cocrystals 4.1 Introduction 4.2 Complementarity between API and coformer 4.3 Preparation methods of cocrystals 4.3.1 Spray drying 4.3.2 Freeze drying 4.3.3 Hot melt extrusion 4.3.4 Rotary evaporator method 4.3.5 Vapor-assisted tumbling 4.4 Drug
drug cocrystals 4.5 Drug
nutraceutical cocrystals 4.6 Ternary and higher order cocrystals 4.7 Cocrystals of different stoichiometry 4.8 Zwitterionic cocrystals 4.9 Halogen-bonded pharmaceutical cocrystals 4.10 Characterization methods of cocrystals 4.11 Summary conclusions 4.12 References 4.13 Questions and thoughts Chapter 5 Applications of Pharmaceutical Cocrystals 5.1 Introduction 5.2 Bioavailability improvement 5.3 Hydration stability 5.4 Chemical degradation stability 5.5 Tableting 5.6 Mechanical properties 5.7 Phase diagram and solubility measurements 5.8 Permeability and plasma concentration 5.9 Spring and Parachute model 5.10 Summary conclusions 5.11 References 5.12 Questions and thoughts Chapter 6 Continuous Manufacturing of Cocrystals and Salts 6.1 Introduction 6.2 Batch and flow chemistry 6.3 Flow chemistry and pharmaceutical cocrystals manufacturing 6.4 Case studies of pharmaceutical cocrystals and salts 6.5 Continuous process technologies 6.6 Flow guide for the synthetic chemist 6.7 Summary conclusions 6.8 References 6.9 Questions and thoughts Chapter 7 Commercial Outlook of Pharmaceutical Cocrystals 7.1 Introduction 7.2 Present status 7.3 Patenting and regulatory aspects 7.4 Entresto® drug-drug cocrystal salt 7.5 Seglentis® US-FDA approval 7.6 Summary conclusions 7.7 References 7.8 Questions and thoughts Chapter 8 Controlling Polymorphism 8.1 Introduction 8.2 Definition and importance 8.3 Polymorphism and cocrystallization 8.4 Tailored additives to control crystal size and morphology 8.5 Summary conclusions 8.6 References 8.7 Questions and thoughts Chapter 9 Supramolecular Heterosynthon in High Bioavailability Drugs 9.1 Introduction 9.2 Common heterosynthons in drugs 9.3 Heterosynthon model for high bioavailability drugs 9.4 Models for permeability enhancement 9.5 Cocrystal drugs beyond the Rule of 5 9.6 Improving cell penetration by atom replacement 9.7 Summary conclusions 9.9 Questions and thoughts Chapter 10 Other Applications of Cocrystals 10.1 Introduction 10.2 Property engineering 10.3 Mechanochemistry 10.4 Energetic cocrystals 10.5 Summary conclusions 10.6 References 10.7 Questions and thoughts Chapter 11 AI ML ChatGPT in Chemistry 11.1 Introduction 11.2 Retrosynthetic reaction prediction 11.3 Medicinal molecules 11.4 MOFs and inorganic materials 11.5 Cocrystals 11.6 Summary conclusions 11.7 References 11.8 Questions and thoughts Chapter 12 3D Electron Diffraction 12.1 Introduction 12.2 Advantages of ED 12.3 Resurgence of ED 12.4 New pharmaceutical challenges solved by ED 12.5 Summary conclusions 12.6 References 12.7 Questions and thoughts Chapter 13 Challenges, Conclusions, and Future Directions 13.1 Introduction 13.2 Carboxamide
pyridine-N-oxide heterosynthon 13.3 Browsing the literature 13.4 Challenges in pharmaceutical cocrystal technology 13.5 Conclusions 13.6 References 13.7 Suggested reading Index
Chapter 1 Introduction to Supramolecular Chemistry and Crystal Engineering 1.1 Introduction 1.2 Organic synthesis 1.3 Supramolecular chemistry 1.4 Crystal engineering 1.5 Hydrogen bonding 1.6 Space groups 1.7 Summary conclusions 1.8 References 1.9 Questions and thoughts 1.10 Additional reading Chapter 2 Crystal Engineering, Supramolecular Synthons, and Cocrystal Design 2.1 Introduction 2.2 Supramolecular synthons 2.3 Crystal engineering of pharmaceutical cocrystals 2.3.1 Cocrystals 2.3.2 Pharmaceutical cocrystals 2.4 Cocrystal design approaches 2.4.1 Hydrogen bond synthons 2.4.2
pKa rule 2.4.3 Computational methods 2.4.4 Molecular electrostatic potential surface energy 2.4.5 Hansen solubility parameter 2.5 Summary conclusions 2.6 References 2.7 Questions and thoughts Chapter 3 Pharmaceutical Solid-State Forms 3.1 Introduction 3.2 Pharmaceutical multi-component crystals 3.2.1 Drug salts and pharmaceutical cocrystals 3.2.2 Pharmaceutical cocrystals via crystal engineering 3.2.3 Coamorphous solids 3.2.4 Solid solutions and eutectics 3.2.5 Ionic liquids 3.2.6 Ionic cocrystals 3.2.7 Nanocrystalline drugs 3.2.8 Supramolecular gels of drugs 3.2.9 Salt
cocrystal continuum or hybrid quasi-state of proton 3.2.10 Cocrystal polymorphs 3.2.11 Ternary and higher organic cocrystals 3.3 Summary conclusions 3.4 References 3.5 Questions and thoughts Chapter 4 Design and Methodology of Pharmaceutical Cocrystals 4.1 Introduction 4.2 Complementarity between API and coformer 4.3 Preparation methods of cocrystals 4.3.1 Spray drying 4.3.2 Freeze drying 4.3.3 Hot melt extrusion 4.3.4 Rotary evaporator method 4.3.5 Vapor-assisted tumbling 4.4 Drug
drug cocrystals 4.5 Drug
nutraceutical cocrystals 4.6 Ternary and higher order cocrystals 4.7 Cocrystals of different stoichiometry 4.8 Zwitterionic cocrystals 4.9 Halogen-bonded pharmaceutical cocrystals 4.10 Characterization methods of cocrystals 4.11 Summary conclusions 4.12 References 4.13 Questions and thoughts Chapter 5 Applications of Pharmaceutical Cocrystals 5.1 Introduction 5.2 Bioavailability improvement 5.3 Hydration stability 5.4 Chemical degradation stability 5.5 Tableting 5.6 Mechanical properties 5.7 Phase diagram and solubility measurements 5.8 Permeability and plasma concentration 5.9 Spring and Parachute model 5.10 Summary conclusions 5.11 References 5.12 Questions and thoughts Chapter 6 Continuous Manufacturing of Cocrystals and Salts 6.1 Introduction 6.2 Batch and flow chemistry 6.3 Flow chemistry and pharmaceutical cocrystals manufacturing 6.4 Case studies of pharmaceutical cocrystals and salts 6.5 Continuous process technologies 6.6 Flow guide for the synthetic chemist 6.7 Summary conclusions 6.8 References 6.9 Questions and thoughts Chapter 7 Commercial Outlook of Pharmaceutical Cocrystals 7.1 Introduction 7.2 Present status 7.3 Patenting and regulatory aspects 7.4 Entresto® drug-drug cocrystal salt 7.5 Seglentis® US-FDA approval 7.6 Summary conclusions 7.7 References 7.8 Questions and thoughts Chapter 8 Controlling Polymorphism 8.1 Introduction 8.2 Definition and importance 8.3 Polymorphism and cocrystallization 8.4 Tailored additives to control crystal size and morphology 8.5 Summary conclusions 8.6 References 8.7 Questions and thoughts Chapter 9 Supramolecular Heterosynthon in High Bioavailability Drugs 9.1 Introduction 9.2 Common heterosynthons in drugs 9.3 Heterosynthon model for high bioavailability drugs 9.4 Models for permeability enhancement 9.5 Cocrystal drugs beyond the Rule of 5 9.6 Improving cell penetration by atom replacement 9.7 Summary conclusions 9.9 Questions and thoughts Chapter 10 Other Applications of Cocrystals 10.1 Introduction 10.2 Property engineering 10.3 Mechanochemistry 10.4 Energetic cocrystals 10.5 Summary conclusions 10.6 References 10.7 Questions and thoughts Chapter 11 AI ML ChatGPT in Chemistry 11.1 Introduction 11.2 Retrosynthetic reaction prediction 11.3 Medicinal molecules 11.4 MOFs and inorganic materials 11.5 Cocrystals 11.6 Summary conclusions 11.7 References 11.8 Questions and thoughts Chapter 12 3D Electron Diffraction 12.1 Introduction 12.2 Advantages of ED 12.3 Resurgence of ED 12.4 New pharmaceutical challenges solved by ED 12.5 Summary conclusions 12.6 References 12.7 Questions and thoughts Chapter 13 Challenges, Conclusions, and Future Directions 13.1 Introduction 13.2 Carboxamide
pyridine-N-oxide heterosynthon 13.3 Browsing the literature 13.4 Challenges in pharmaceutical cocrystal technology 13.5 Conclusions 13.6 References 13.7 Suggested reading Index
pKa rule 2.4.3 Computational methods 2.4.4 Molecular electrostatic potential surface energy 2.4.5 Hansen solubility parameter 2.5 Summary conclusions 2.6 References 2.7 Questions and thoughts Chapter 3 Pharmaceutical Solid-State Forms 3.1 Introduction 3.2 Pharmaceutical multi-component crystals 3.2.1 Drug salts and pharmaceutical cocrystals 3.2.2 Pharmaceutical cocrystals via crystal engineering 3.2.3 Coamorphous solids 3.2.4 Solid solutions and eutectics 3.2.5 Ionic liquids 3.2.6 Ionic cocrystals 3.2.7 Nanocrystalline drugs 3.2.8 Supramolecular gels of drugs 3.2.9 Salt
cocrystal continuum or hybrid quasi-state of proton 3.2.10 Cocrystal polymorphs 3.2.11 Ternary and higher organic cocrystals 3.3 Summary conclusions 3.4 References 3.5 Questions and thoughts Chapter 4 Design and Methodology of Pharmaceutical Cocrystals 4.1 Introduction 4.2 Complementarity between API and coformer 4.3 Preparation methods of cocrystals 4.3.1 Spray drying 4.3.2 Freeze drying 4.3.3 Hot melt extrusion 4.3.4 Rotary evaporator method 4.3.5 Vapor-assisted tumbling 4.4 Drug
drug cocrystals 4.5 Drug
nutraceutical cocrystals 4.6 Ternary and higher order cocrystals 4.7 Cocrystals of different stoichiometry 4.8 Zwitterionic cocrystals 4.9 Halogen-bonded pharmaceutical cocrystals 4.10 Characterization methods of cocrystals 4.11 Summary conclusions 4.12 References 4.13 Questions and thoughts Chapter 5 Applications of Pharmaceutical Cocrystals 5.1 Introduction 5.2 Bioavailability improvement 5.3 Hydration stability 5.4 Chemical degradation stability 5.5 Tableting 5.6 Mechanical properties 5.7 Phase diagram and solubility measurements 5.8 Permeability and plasma concentration 5.9 Spring and Parachute model 5.10 Summary conclusions 5.11 References 5.12 Questions and thoughts Chapter 6 Continuous Manufacturing of Cocrystals and Salts 6.1 Introduction 6.2 Batch and flow chemistry 6.3 Flow chemistry and pharmaceutical cocrystals manufacturing 6.4 Case studies of pharmaceutical cocrystals and salts 6.5 Continuous process technologies 6.6 Flow guide for the synthetic chemist 6.7 Summary conclusions 6.8 References 6.9 Questions and thoughts Chapter 7 Commercial Outlook of Pharmaceutical Cocrystals 7.1 Introduction 7.2 Present status 7.3 Patenting and regulatory aspects 7.4 Entresto® drug-drug cocrystal salt 7.5 Seglentis® US-FDA approval 7.6 Summary conclusions 7.7 References 7.8 Questions and thoughts Chapter 8 Controlling Polymorphism 8.1 Introduction 8.2 Definition and importance 8.3 Polymorphism and cocrystallization 8.4 Tailored additives to control crystal size and morphology 8.5 Summary conclusions 8.6 References 8.7 Questions and thoughts Chapter 9 Supramolecular Heterosynthon in High Bioavailability Drugs 9.1 Introduction 9.2 Common heterosynthons in drugs 9.3 Heterosynthon model for high bioavailability drugs 9.4 Models for permeability enhancement 9.5 Cocrystal drugs beyond the Rule of 5 9.6 Improving cell penetration by atom replacement 9.7 Summary conclusions 9.9 Questions and thoughts Chapter 10 Other Applications of Cocrystals 10.1 Introduction 10.2 Property engineering 10.3 Mechanochemistry 10.4 Energetic cocrystals 10.5 Summary conclusions 10.6 References 10.7 Questions and thoughts Chapter 11 AI ML ChatGPT in Chemistry 11.1 Introduction 11.2 Retrosynthetic reaction prediction 11.3 Medicinal molecules 11.4 MOFs and inorganic materials 11.5 Cocrystals 11.6 Summary conclusions 11.7 References 11.8 Questions and thoughts Chapter 12 3D Electron Diffraction 12.1 Introduction 12.2 Advantages of ED 12.3 Resurgence of ED 12.4 New pharmaceutical challenges solved by ED 12.5 Summary conclusions 12.6 References 12.7 Questions and thoughts Chapter 13 Challenges, Conclusions, and Future Directions 13.1 Introduction 13.2 Carboxamide
pyridine-N-oxide heterosynthon 13.3 Browsing the literature 13.4 Challenges in pharmaceutical cocrystal technology 13.5 Conclusions 13.6 References 13.7 Suggested reading Index