Ce travail, rédigé à la fois en anglais et en français, porte sur l'approximation probabiliste dans un contexte fractionnaire, c'est-a-dire dans des modèles reliés d'une manière ou d'une autre au mouvement brownien fractionnaire. Le dénominateur commun de nos résultats est qu'ils proposent des conditions générales sous lesquelles une variable aléatoire de loi compliquée converge, en loi, vers une variable aléatoire de loi plus aisée. Et quand cela a été possible, nous avons aussi cherché à associer des vitesses de convergence. Les outils utilisés sont reliés a un domaine de recherche récent, appelé approche de Malliavin-Stein. En 2005, Nualart et Peccati ont découvert un théorème limite surprenant (qui porte aujourd'hui le nom de théorème du moment quatrième) pour les suites d'intégrales multiples de Wiener-Itô: pour de telles suites et après renormalisation, la convergence en loi vers la gaussienne standard se trouve être équivalente à la convergence du seul moment quatrième. Peu de temps après la publication de ce joli résultat, Peccati et Tudor l'ont étendu au cadre multivarié.