184,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
92 °P sammeln
  • Gebundenes Buch

This book describes recent progress in the mechanistic studies and applications of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). In this book, various novel techniques in SERS and TERS such as UV resonance TERS, electrochemical TERS, and three-dimensional SERS imaging are outlined. A number of new applications of SERS and TERS such as those to photonics, nanotechnology, microfluidics, and medical diagnosis along with future perspectives are also discussed. Finally, the applications of new data analysis, models, and machine learning in SERS and TERS studies…mehr

Produktbeschreibung
This book describes recent progress in the mechanistic studies and applications of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). In this book, various novel techniques in SERS and TERS such as UV resonance TERS, electrochemical TERS, and three-dimensional SERS imaging are outlined. A number of new applications of SERS and TERS such as those to photonics, nanotechnology, microfluidics, and medical diagnosis along with future perspectives are also discussed. Finally, the applications of new data analysis, models, and machine learning in SERS and TERS studies are reviewed. The novelty of this book is the forming of a new bridge between the theory and applications. Also, the importance of chemical mechanism and that of semiconductor-enhanced Raman scattering is emphasized. The main audiences are researchers in academia, research institutes, companies, and graduate students looking for a comprehensive book on the latest studies of SERS and TERS.
Autorenporträt
Prof. Prochazka received his Ph.D. from Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic and University Pierre et Marie Curie, Paris VI, France in 1997. His research interests are focused on Raman/SERS spectroscopy of biologically important molecules, designing/testing new metallic nanoparticles/nanostructures for SERS, plasmon-enhanced spectroscopies and biosensing. He is author of monograph " Surface-Enhanced Raman Spectroscopy: Bioanalytical, Biomolecular and Medical Applications", Springer (2016), one book chapter and 70 papers in IF Journals including Angewandte Chemie, Chem. Rev., J. Mat. Chem. C and Sci. Rep.   Prof. Kneipp received her Dr. rer. nat. from Free University of Berlin in 2002, after having conducted her dissertation work at Robert-Koch Institute Berlin. After postdoctoral research in Rotterdam, Princeton, and Berlin, she was appointed at Humboldt-Universität zu Berlin as assistant professor of Analytical Chemistry in 2008 and as full professor (W3) of Physical Chemistry in 2012. Her research interests are in SERS of complex samples, multimodal microspectroscopy, basic aspects of plasmonic enhancement in multiphoton excitation, and plasmonic catalysis. She co-authored 143 peer-reviewed papers and serves as Associate Editor for the Journal of Raman Spectroscopy (Wiley), as Editorial Co-Chair for Analysis & Sensing (ChemistryEurope), as well as on the editorial board of Vibrational Spectroscopy (Elsevier). She co-edited a book in 2008 with Wiley-Blackwell on "Biomedical Vibrational Spectroscopy".   Prof. Zhao received his Ph.D. from Jilin University in 1992. His research interests include development of SERS-active semiconducting materials and SERS-based applications in biomedicine. He contributed to 7 books including the book "Recent Developments in Plasmon-Supported Raman Spectroscopy: 45 Years ofEnhanced Raman Signals", World Scientific, 2018. He published 500 papers in journals such as Nature Reviews Methods Primers, Angewandte Chemie, and Chemical Science. He has 30 years of teaching experience at physical chemistry and analytical chemistry.   Prof. Ozaki received his Ph.D. from Osaka University in 1978. His research interests include basic researches and applications of surface-enhanced Raman scattering and tip-enhanced Raman scattering, biomedical applications of Raman spectroscopy, basic and applications of near-infrared spectroscopy and far-ultraviolet spectroscopy. He is currently professor emeritus of Kwansei Gakuin University. He is the authors of Yukihiro Ozaki, Zhong-Qun Tian, "Recent Developments in Plasmon-Supported Raman Spectroscopy: 45 Years of Enhanced Raman Signals" World Scientific, 2018, Y. Ozaki, M. Wojcik, J. Popp, eds., "Molecular Spectroscopy-Quantum Chemistry Approach ", Wiley-VCH (2019),Y. Ozaki, C. Huck, S. Tsuchikawa, and S. B. Engelsen eds., "Near-Infrared Spectroscopy, Theory, Spectral Analysis, Instrumentation, and Applications", Springer (2020), and many more. He published more than 1000 articles in internationally renowned journals such as Angewandte Chemie, Nano Lett., Chem. Rev. He won many awards such as Pittsburgh Spectroscopy Award in 2019, Charles Mann Award in 2020, and Medal of Ioannes Marcus Marci in 2022. Ozaki has teaching experience at Kwansei Gakuin University and The Jikei University of School of Medicine for more than 45 years.