Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The Symmetric hypergraph theorem is a theorem in combinatorics that puts an upper bound on the chromatic number of a graph (or hypergraph in general). The original reference for this paper is unknown at the moment, and has been called folklore.A group G acting on a set S is called transitive if given any two elements x and y in S, there exists an element f of G such that f(x) = y. A graph (or hypergraph) is called symmetric if it''s automorphism group is transitive.This theorem has applications to Ramsey theory, specifically graph Ramsey theory. Using this theorem, a relationship between the graph Ramsey numbers and the extremal numbers can be shown (see Graham-Rothschild-Spencer for the details).