Yong-Geun Oh
Symplectic Topology and Floer Homology 2 Volume Hardback Set
Yong-Geun Oh
Symplectic Topology and Floer Homology 2 Volume Hardback Set
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The first systematic exposition of basic Floer homology theory and its applications to symplectic topology as a whole.
Andere Kunden interessierten sich auch für
- Ehud HrushovskiNon-Archimedean Tame Topology and Stably Dominated Types105,99 €
- H. F. BakerPrinciples of Geometry27,99 €
- D. P. IlyutkoParity and Patterns in Low-dimensional Topology62,99 €
- Calvin C. MooreGlobal Analysis on Foliated Spaces68,99 €
- S. BuoncristianoA Geometric Approach to Homology Theory57,99 €
- D. A. Salamon (ed.)Symplectic Geometry37,99 €
- Christian HaesemeyerThe Norm Residue Theorem in Motivic Cohomology106,99 €
-
-
-
The first systematic exposition of basic Floer homology theory and its applications to symplectic topology as a whole.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge-Hitachi
- Seitenzahl: 892
- Erscheinungstermin: 24. September 2015
- Englisch
- Abmessung: 236mm x 160mm x 66mm
- Gewicht: 1520g
- ISBN-13: 9781107535688
- ISBN-10: 1107535689
- Artikelnr.: 42700110
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Cambridge-Hitachi
- Seitenzahl: 892
- Erscheinungstermin: 24. September 2015
- Englisch
- Abmessung: 236mm x 160mm x 66mm
- Gewicht: 1520g
- ISBN-13: 9781107535688
- ISBN-10: 1107535689
- Artikelnr.: 42700110
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Yong-Geun Oh is Director of the IBS Center for Geometry and Physics and is Professor in the Department of Mathematics at POSTECH (Pohang University of Science and Technology) in Korea. He was also Professor in the Department of Mathematics at the University of Wisconsin, Madison. He is a member of the KMS, the AMS, the Korean National Academy of Sciences, and the inaugural class of AMS Fellows. In 2012 he received the Kyung-Ahm Prize for Science in Korea.
Volume 1: Preface
Part I. Hamiltonian Dynamics and Symplectic Geometry: 1. Least action principle and the Hamiltonian mechanics
2. Symplectic manifolds and Hamilton's equation
3. Lagrangian submanifolds
4. Symplectic fibrations
5. Hofer's geometry of Ham(M, ¿)
6. C0-Symplectic topology and Hamiltonian dynamics
Part II. Rudiments of Pseudo-Holomorphic Curves: 7. Geometric calculations
8. Local study of J-holomorphic curves
9. Gromov compactification and stable maps
10. Fredholm theory
11. Applications to symplectic topology
References
Index. Volume 2: Preface
Part III. Lagrangian Intersection Floer Homology: 12. Floer homology on cotangent bundles
13. Off-shell framework of Floer complex with bubbles
14. On-shell analysis of Floer moduli spaces
15. Off-shell analysis of the Floer moduli space
16. Floer homology of monotone Lagrangian submanifolds
17. Applications to symplectic topology
Part IV. Hamiltonian Fixed Point Floer Homology: 18. Action functional and Conley-Zehnder index
19. Hamiltonian Floer homology
20. Pants product and quantum cohomology
21. Spectral invariants: construction
22. Spectral invariants: applications
Appendix A. The Weitzenböck formula for vector valued forms
Appendix B. Three-interval method of exponential estimates
Appendix C. Maslov index, Conley-Zehnder index and index formula
References
Index.
Part I. Hamiltonian Dynamics and Symplectic Geometry: 1. Least action principle and the Hamiltonian mechanics
2. Symplectic manifolds and Hamilton's equation
3. Lagrangian submanifolds
4. Symplectic fibrations
5. Hofer's geometry of Ham(M, ¿)
6. C0-Symplectic topology and Hamiltonian dynamics
Part II. Rudiments of Pseudo-Holomorphic Curves: 7. Geometric calculations
8. Local study of J-holomorphic curves
9. Gromov compactification and stable maps
10. Fredholm theory
11. Applications to symplectic topology
References
Index. Volume 2: Preface
Part III. Lagrangian Intersection Floer Homology: 12. Floer homology on cotangent bundles
13. Off-shell framework of Floer complex with bubbles
14. On-shell analysis of Floer moduli spaces
15. Off-shell analysis of the Floer moduli space
16. Floer homology of monotone Lagrangian submanifolds
17. Applications to symplectic topology
Part IV. Hamiltonian Fixed Point Floer Homology: 18. Action functional and Conley-Zehnder index
19. Hamiltonian Floer homology
20. Pants product and quantum cohomology
21. Spectral invariants: construction
22. Spectral invariants: applications
Appendix A. The Weitzenböck formula for vector valued forms
Appendix B. Three-interval method of exponential estimates
Appendix C. Maslov index, Conley-Zehnder index and index formula
References
Index.
Volume 1: Preface
Part I. Hamiltonian Dynamics and Symplectic Geometry: 1. Least action principle and the Hamiltonian mechanics
2. Symplectic manifolds and Hamilton's equation
3. Lagrangian submanifolds
4. Symplectic fibrations
5. Hofer's geometry of Ham(M, ¿)
6. C0-Symplectic topology and Hamiltonian dynamics
Part II. Rudiments of Pseudo-Holomorphic Curves: 7. Geometric calculations
8. Local study of J-holomorphic curves
9. Gromov compactification and stable maps
10. Fredholm theory
11. Applications to symplectic topology
References
Index. Volume 2: Preface
Part III. Lagrangian Intersection Floer Homology: 12. Floer homology on cotangent bundles
13. Off-shell framework of Floer complex with bubbles
14. On-shell analysis of Floer moduli spaces
15. Off-shell analysis of the Floer moduli space
16. Floer homology of monotone Lagrangian submanifolds
17. Applications to symplectic topology
Part IV. Hamiltonian Fixed Point Floer Homology: 18. Action functional and Conley-Zehnder index
19. Hamiltonian Floer homology
20. Pants product and quantum cohomology
21. Spectral invariants: construction
22. Spectral invariants: applications
Appendix A. The Weitzenböck formula for vector valued forms
Appendix B. Three-interval method of exponential estimates
Appendix C. Maslov index, Conley-Zehnder index and index formula
References
Index.
Part I. Hamiltonian Dynamics and Symplectic Geometry: 1. Least action principle and the Hamiltonian mechanics
2. Symplectic manifolds and Hamilton's equation
3. Lagrangian submanifolds
4. Symplectic fibrations
5. Hofer's geometry of Ham(M, ¿)
6. C0-Symplectic topology and Hamiltonian dynamics
Part II. Rudiments of Pseudo-Holomorphic Curves: 7. Geometric calculations
8. Local study of J-holomorphic curves
9. Gromov compactification and stable maps
10. Fredholm theory
11. Applications to symplectic topology
References
Index. Volume 2: Preface
Part III. Lagrangian Intersection Floer Homology: 12. Floer homology on cotangent bundles
13. Off-shell framework of Floer complex with bubbles
14. On-shell analysis of Floer moduli spaces
15. Off-shell analysis of the Floer moduli space
16. Floer homology of monotone Lagrangian submanifolds
17. Applications to symplectic topology
Part IV. Hamiltonian Fixed Point Floer Homology: 18. Action functional and Conley-Zehnder index
19. Hamiltonian Floer homology
20. Pants product and quantum cohomology
21. Spectral invariants: construction
22. Spectral invariants: applications
Appendix A. The Weitzenböck formula for vector valued forms
Appendix B. Three-interval method of exponential estimates
Appendix C. Maslov index, Conley-Zehnder index and index formula
References
Index.