Syndiotactic Polystyrene
Synthesis, Characterization, Processing, and Applications
Herausgegeben von Schellenberg, Jürgen
Syndiotactic Polystyrene
Synthesis, Characterization, Processing, and Applications
Herausgegeben von Schellenberg, Jürgen
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A recently synthesized compound, syndiotactic polystyrene (SPS) is useful in areas like medical equipment, where its tough crystalline structure makes it able to resist the moisture, heat, and cleaners used to sterilize the equipment. Taking an unmatched look at this new material, Syndiotactic Polystyrene covers all aspects of this plastic from preparation to function and properties to commercial applications. The coverage enables readers to compare, select, and integrate an appropriate materials solution. Applications in automotives, electronics, and appliances are all discussed, along with…mehr
- Montgomery T. ShawPolymer Rheology139,99 €
- Anbanandam ParthibanSynthesis and Applications of Copolymers155,99 €
- Stepan PodzimekLight Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation144,99 €
- Christopher S. BrazelFundamental Principles of Polymeric Materials114,99 €
- WileyCharacterization and Analysis of Polymers492,99 €
- Ali MorsaliFunctional Metal-Organic Frameworks214,99 €
- Thomas F. DeRosaPatent Applications280,99 €
-
-
-
Syndiotactic Polystyrene (SPS), synthesized in a laboratory for the first time in 1985, has become commercialized in a very short time, with wide acceptance on the global plastics market. Written by leading experts from academia and industry from all over the world, Syndiotactic Polystyrene offers a comprehensive review of all aspects of SPS of interest to both science and industry, from preparation and properties to applications.
This essential reference to SPS covers:
The preparation of syndiotactic polystyrene by half-metallocenes and other transition metal catalysts
The structure and fundamental properties, especially morphology and crystallization and solution behavior
The commercial process for SPS manufacturing
Properties, processing, and applications of syndiotactic polystyrenes
Polymers based on syndiotactic polystyrenes, for example, by functionalization and modification, and nanocomposites
Ideal for polymer chemists, physicists, plastics engineers, materials scientists, and all those dealing with plastics manufacturing and processing, this important resource provides the information one needs to compare, select, and integrate an appropriate materials solution for industrial use or research.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 484
- Erscheinungstermin: 1. November 2009
- Englisch
- Abmessung: 241mm x 160mm x 28mm
- Gewicht: 773g
- ISBN-13: 9780470286883
- ISBN-10: 0470286881
- Artikelnr.: 27134819
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 484
- Erscheinungstermin: 1. November 2009
- Englisch
- Abmessung: 241mm x 160mm x 28mm
- Gewicht: 773g
- ISBN-13: 9780470286883
- ISBN-10: 0470286881
- Artikelnr.: 27134819
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
CONTRIBUTORS.
ABOUT THE EDITOR.
PART I INTRODUCTION.
1. Historical Overview and Commercialization of Syndiotactic Polystyrene (
Michael Malanga, Osamu Isogai, Takeshi Yamada, Shigeo Iwasaki, and Masahiko
Kuramoto).
1.1 Discovery of Syndiotactic Polystyrene (SPS).
1.2 Early Years of Development (1985-1989).
1.3 Intense Development Years (1989-1996).
1.4 Initial Commercial Launch Stage (1996-2001).
1.5 Years 2001-2007.
PART II PREPARATION OF SYNDIOTACTIC POLYSTYRENE.
2. Transition Metal Catalysts for Syndiotactic Polystyrene (Norio Tomotsu,
Thomas H. Newman, Mizutomo Takeuchi, Richard Campbell Jr., and Jürgen
Schellenberg).
2.1 Introduction.
2.2 Transition Metal Compounds.
2.3 Summary.
References.
3. Cocatalysts for the Syndiospecific Styrene Polymerization (Norio
Tomotsu, Hiroshi Maezawa, and Thomas H. Newman).
3.1 Introduction.
3.2 MAO.
3.3 Boron Compounds.
3.4 Other Chemicals.
3.5 Summary.
References.
4. Mechanisms for Stereochemical Control in the Syndiotactic Polymerization
of Styrene (Norio Tomotsu, Thomas H. Newman, and Richard Campbell Jr.).
4.1 Introduction.
4.2 Insertion of the Growing Polymer Chain into the Double Bond of Styrene.
4.3 Stereochemistry of the Styrene Insertion.
4.4 Effects of Hydrogenation of the Catalyst.
4.5 Active Site Species.
4.6 Theoretical Analysis of the Catalyst.
4.7 Kinetic Analysis of Styrene Polymerization.
4.8 Conclusions.
References.
5. Copolymerization of Ethylene with Styrene: Design of Efficient
Transition Metal Complex Catalysts (Kotohiro Nomura).
5.1 Introduction.
5.2 Ethylene/Styrene Copolymers: Microstructures, Thermal Properties, and
Composition Analyses.
5.3 Ethylene/Styrene Copolymerization Using Transition Metal
Complex-Cocatalyst Systems.
5.4 Summary and Outlook.
References.
6. Structure and Properties of Tetrabenzo[a,c,g,i]fl uorenyl-Based Titanium
Catalysts (Rüdiger Beckhaus, Kai Schröder, and Jürgen Schellenberg).
6.1 Introduction.
6.2 The Tbf Ligand.
6.3 Tbf Lithium.
6.4 Tbf Titanium(III) Derivatives.
6.5 Tbf Titanium(IV) Derivatives.
6.6 Dynamic and Polymerization Behavior of Tetrabenzofluorenyl Titanium
Complexes.
6.7 Conclusions.
References.
7. Rare-Earth Metal Complexes as Catalysts for Syndiospecific Styrene
Polymerization (Klaus Beckerle and Jun Okuda).
7.1 Introduction.
7.2 Metallocene Catalysts.
7.3 Constrained Geometry Catalysts.
7.4 Half-Sandwich Catalysts.
7.5 Nonmetallocene Catalysts.
7.6 Conclusion.
References.
8. Syndiospecific Styrene Polymerization with Heterogenized Transition
Metal Catalysts (Kyu Yong Choi).
8.1 Introduction.
8.2 Kinetics of Syndiospecific Polymerization with Heterogeneous
Metallocene Catalysts.
8.3 Nascent Morphology of Syndiotactic Polystyrene.
8.4 Concluding Remarks.
References.
PART III STRUCTURE AND FUNDAMENTAL PROPERTIES OF SYNDIOTACTIC POLYSTYRENE.
9. Structure, Morphology, and Crystallization Behavior of Syndiotactic
Polystyrene (Andrea Sorrentino and Vittoria Vittoria).
9.1 Introduction.
9.2 Polymorphic Behavior of SPS.
9.3 Morphology of the Zigzag Forms.
9.4 Morphology of the Mesomorphic Phases.
9.5 Thermodynamic and Kinetics of Crystallization.
9.6 Melting Behavior.
9.7 Structure and Properties of the Crystallized Samples.
References.
10. Preparation, Structure, Properties, and Applications of Co-Crystals and
Nanoporous Crystalline Phases of Syndiotactic Polystyrene (Gaetano Guerra,
Alexandra Romina Albunia, and Concetta D'Aniello).
10.1 Introduction.
10.2 Co-Crystals.
10.3 Nanoporous Crystalline Phases.
10.4 Conclusions and Perspectives.
10.5 Acknowledgments.
References.
11. Crystallization Thermodynamics and Kinetics of Syndiotactic Polystyrene
(Tomoaki Takebe and Komei Yamasaki).
11.1 Introduction.
11.2 Theoretical Background.
11.3 Equilibrium Melting Point of SPS.
11.4 Analyses of Spherulitic Growth Rate G .
11.5 Comparison Between SPS and IPS.
References.
PART IV COMMERCIAL PROCESSES FOR MANUFACTURING OF SYNDIOTACTIC POLYSTYRENE.
12. Processes for the Production of Syndiotactic Polystyrene (Masao Aida,
David Habermann, Hans-Joachim Leder, and Jürgen Schellenberg).
12.1 Introduction.
12.2 Monomer Purification Section.
12.3 Catalyst Section.
12.4 Polymerization Section.
12.5 Styrene Stripping Section.
12.6 Deactivating Section.
12.7 Pelletizing Section.
12.8 Blending Section.
12.9 Shipping Section.
References.
PART V PROPERTIES, PROCESSING, AND APPLICATIONS OF SYNDIOTACTIC
POLYSTYRENE.
13. Properties of Syndiotactic Polystyrene (Tomoaki Takebe, Komei Yamasaki,
Keisuke Funaki, and Michael Malanga).
13.1 Introduction.
13.2 Rheological Properties of SPS.
13.3 Basic Physical Mechanical Properties of SPS.
13.4 Orientation of SPS and Properties of Oriented SPS.
13.5 Other Important Properties of SPS.
References.
14. Melt Processing of Syndiotactic Polystyrene (David Bank, Kevin Nichols,
Harold Fowler, Jason Reese, and Gerry Billovits).
14.1 Introduction.
14.2 Compounding.
14.3 Injection Molding.
14.4 Sheet and Film Extrusion.
14.5 Film Processing and Fabrication.
14.6 Fiber Spinning.
References.
15. Applications of Syndiotactic Polystyrene (Tom Fiola, Akihiko Okada,
Masami Mihara, and Kevin Nichols).
15.1 Introduction.
15.2 The Performance Capabilities of SPS.
15.3 Connectors for Automotive and Electronic Applications.
15.4 Electronic Components: Plated and Non-Plated.
15.5 Industrial and Appliance Components.
References.
16. Blends of Syndiotactic Polystyrene with Polyamide (Kevin Nichols,
Akihiko Okada, and Hiroki Fukui).
16.1 Introduction.
16.2 Composition of SPS/Nylon Blends.
16.3 Properties of SPS/Nylon Blends.
16.4 Applications of SPS/Nylon Blends.
References.
17. Blends of Syndiotactic Polystyrene with Polystyrenes (Tomoaki Takebe,
Komei Yamasaki, Akihiko Okada, and Takuma Aoyama).
17.1 Introduction.
17.2 SANS Measurements.
17.3 Theoretical Background.
17.4 Tacticity Effect on Miscibility.
17.5 Properties of Blends of SPS and APS.
References.
18. Compatibilizers for Impact-Modifi ed Syndiotactic Polystyrene (Tomoaki
Takebe, Akihiko Okada, and Nobuyuki Sato).
18.1 Introduction.
18.2 Morphological Analyses of HISPS.
18.3 Morphology of SPS/PPO Binary Blends.
18.4 Compatibilizer Effects.
References.
PART VI POLYMERS BASED ON SYNDIOTACTIC POLYSTYRENES.
19. Functionalization and Block/Graft Reactions of Syndiotactic Polystyrene
Using Borane Comonomers and Chain Transfer Agents (T. C. Mike Chung).
19.1 Introduction.
19.2 Functionalization of SPS via Borane Comonomers.
19.3 Functionalization of SPS via Borane Chain Transfer Agents.
19.4 Summary.
19.5 Acknowledgment.
References.
20. Nanocomposites Based on Syndiotactic Polystyrene (O Ok Park and Mun Ho
Kim).
20.1 Introduction.
20.2 Polymer Nanocomposites and Microstructure.
20.3 Fabrication of Polymer Nanocomposites.
20.4 Characterization of Polymer Nanocomposites.
20.5 Preparation of SPS Nanocomposites.
20.6 Properties of SPS Nanocomposites.
20.7 Final Remarks.
References.
INDEX.
CONTRIBUTORS.
ABOUT THE EDITOR.
PART I INTRODUCTION.
1. Historical Overview and Commercialization of Syndiotactic Polystyrene (
Michael Malanga, Osamu Isogai, Takeshi Yamada, Shigeo Iwasaki, and Masahiko
Kuramoto).
1.1 Discovery of Syndiotactic Polystyrene (SPS).
1.2 Early Years of Development (1985-1989).
1.3 Intense Development Years (1989-1996).
1.4 Initial Commercial Launch Stage (1996-2001).
1.5 Years 2001-2007.
PART II PREPARATION OF SYNDIOTACTIC POLYSTYRENE.
2. Transition Metal Catalysts for Syndiotactic Polystyrene (Norio Tomotsu,
Thomas H. Newman, Mizutomo Takeuchi, Richard Campbell Jr., and Jürgen
Schellenberg).
2.1 Introduction.
2.2 Transition Metal Compounds.
2.3 Summary.
References.
3. Cocatalysts for the Syndiospecific Styrene Polymerization (Norio
Tomotsu, Hiroshi Maezawa, and Thomas H. Newman).
3.1 Introduction.
3.2 MAO.
3.3 Boron Compounds.
3.4 Other Chemicals.
3.5 Summary.
References.
4. Mechanisms for Stereochemical Control in the Syndiotactic Polymerization
of Styrene (Norio Tomotsu, Thomas H. Newman, and Richard Campbell Jr.).
4.1 Introduction.
4.2 Insertion of the Growing Polymer Chain into the Double Bond of Styrene.
4.3 Stereochemistry of the Styrene Insertion.
4.4 Effects of Hydrogenation of the Catalyst.
4.5 Active Site Species.
4.6 Theoretical Analysis of the Catalyst.
4.7 Kinetic Analysis of Styrene Polymerization.
4.8 Conclusions.
References.
5. Copolymerization of Ethylene with Styrene: Design of Efficient
Transition Metal Complex Catalysts (Kotohiro Nomura).
5.1 Introduction.
5.2 Ethylene/Styrene Copolymers: Microstructures, Thermal Properties, and
Composition Analyses.
5.3 Ethylene/Styrene Copolymerization Using Transition Metal
Complex-Cocatalyst Systems.
5.4 Summary and Outlook.
References.
6. Structure and Properties of Tetrabenzo[a,c,g,i]fl uorenyl-Based Titanium
Catalysts (Rüdiger Beckhaus, Kai Schröder, and Jürgen Schellenberg).
6.1 Introduction.
6.2 The Tbf Ligand.
6.3 Tbf Lithium.
6.4 Tbf Titanium(III) Derivatives.
6.5 Tbf Titanium(IV) Derivatives.
6.6 Dynamic and Polymerization Behavior of Tetrabenzofluorenyl Titanium
Complexes.
6.7 Conclusions.
References.
7. Rare-Earth Metal Complexes as Catalysts for Syndiospecific Styrene
Polymerization (Klaus Beckerle and Jun Okuda).
7.1 Introduction.
7.2 Metallocene Catalysts.
7.3 Constrained Geometry Catalysts.
7.4 Half-Sandwich Catalysts.
7.5 Nonmetallocene Catalysts.
7.6 Conclusion.
References.
8. Syndiospecific Styrene Polymerization with Heterogenized Transition
Metal Catalysts (Kyu Yong Choi).
8.1 Introduction.
8.2 Kinetics of Syndiospecific Polymerization with Heterogeneous
Metallocene Catalysts.
8.3 Nascent Morphology of Syndiotactic Polystyrene.
8.4 Concluding Remarks.
References.
PART III STRUCTURE AND FUNDAMENTAL PROPERTIES OF SYNDIOTACTIC POLYSTYRENE.
9. Structure, Morphology, and Crystallization Behavior of Syndiotactic
Polystyrene (Andrea Sorrentino and Vittoria Vittoria).
9.1 Introduction.
9.2 Polymorphic Behavior of SPS.
9.3 Morphology of the Zigzag Forms.
9.4 Morphology of the Mesomorphic Phases.
9.5 Thermodynamic and Kinetics of Crystallization.
9.6 Melting Behavior.
9.7 Structure and Properties of the Crystallized Samples.
References.
10. Preparation, Structure, Properties, and Applications of Co-Crystals and
Nanoporous Crystalline Phases of Syndiotactic Polystyrene (Gaetano Guerra,
Alexandra Romina Albunia, and Concetta D'Aniello).
10.1 Introduction.
10.2 Co-Crystals.
10.3 Nanoporous Crystalline Phases.
10.4 Conclusions and Perspectives.
10.5 Acknowledgments.
References.
11. Crystallization Thermodynamics and Kinetics of Syndiotactic Polystyrene
(Tomoaki Takebe and Komei Yamasaki).
11.1 Introduction.
11.2 Theoretical Background.
11.3 Equilibrium Melting Point of SPS.
11.4 Analyses of Spherulitic Growth Rate G .
11.5 Comparison Between SPS and IPS.
References.
PART IV COMMERCIAL PROCESSES FOR MANUFACTURING OF SYNDIOTACTIC POLYSTYRENE.
12. Processes for the Production of Syndiotactic Polystyrene (Masao Aida,
David Habermann, Hans-Joachim Leder, and Jürgen Schellenberg).
12.1 Introduction.
12.2 Monomer Purification Section.
12.3 Catalyst Section.
12.4 Polymerization Section.
12.5 Styrene Stripping Section.
12.6 Deactivating Section.
12.7 Pelletizing Section.
12.8 Blending Section.
12.9 Shipping Section.
References.
PART V PROPERTIES, PROCESSING, AND APPLICATIONS OF SYNDIOTACTIC
POLYSTYRENE.
13. Properties of Syndiotactic Polystyrene (Tomoaki Takebe, Komei Yamasaki,
Keisuke Funaki, and Michael Malanga).
13.1 Introduction.
13.2 Rheological Properties of SPS.
13.3 Basic Physical Mechanical Properties of SPS.
13.4 Orientation of SPS and Properties of Oriented SPS.
13.5 Other Important Properties of SPS.
References.
14. Melt Processing of Syndiotactic Polystyrene (David Bank, Kevin Nichols,
Harold Fowler, Jason Reese, and Gerry Billovits).
14.1 Introduction.
14.2 Compounding.
14.3 Injection Molding.
14.4 Sheet and Film Extrusion.
14.5 Film Processing and Fabrication.
14.6 Fiber Spinning.
References.
15. Applications of Syndiotactic Polystyrene (Tom Fiola, Akihiko Okada,
Masami Mihara, and Kevin Nichols).
15.1 Introduction.
15.2 The Performance Capabilities of SPS.
15.3 Connectors for Automotive and Electronic Applications.
15.4 Electronic Components: Plated and Non-Plated.
15.5 Industrial and Appliance Components.
References.
16. Blends of Syndiotactic Polystyrene with Polyamide (Kevin Nichols,
Akihiko Okada, and Hiroki Fukui).
16.1 Introduction.
16.2 Composition of SPS/Nylon Blends.
16.3 Properties of SPS/Nylon Blends.
16.4 Applications of SPS/Nylon Blends.
References.
17. Blends of Syndiotactic Polystyrene with Polystyrenes (Tomoaki Takebe,
Komei Yamasaki, Akihiko Okada, and Takuma Aoyama).
17.1 Introduction.
17.2 SANS Measurements.
17.3 Theoretical Background.
17.4 Tacticity Effect on Miscibility.
17.5 Properties of Blends of SPS and APS.
References.
18. Compatibilizers for Impact-Modifi ed Syndiotactic Polystyrene (Tomoaki
Takebe, Akihiko Okada, and Nobuyuki Sato).
18.1 Introduction.
18.2 Morphological Analyses of HISPS.
18.3 Morphology of SPS/PPO Binary Blends.
18.4 Compatibilizer Effects.
References.
PART VI POLYMERS BASED ON SYNDIOTACTIC POLYSTYRENES.
19. Functionalization and Block/Graft Reactions of Syndiotactic Polystyrene
Using Borane Comonomers and Chain Transfer Agents (T. C. Mike Chung).
19.1 Introduction.
19.2 Functionalization of SPS via Borane Comonomers.
19.3 Functionalization of SPS via Borane Chain Transfer Agents.
19.4 Summary.
19.5 Acknowledgment.
References.
20. Nanocomposites Based on Syndiotactic Polystyrene (O Ok Park and Mun Ho
Kim).
20.1 Introduction.
20.2 Polymer Nanocomposites and Microstructure.
20.3 Fabrication of Polymer Nanocomposites.
20.4 Characterization of Polymer Nanocomposites.
20.5 Preparation of SPS Nanocomposites.
20.6 Properties of SPS Nanocomposites.
20.7 Final Remarks.
References.
INDEX.