Anders Kock
Synthetic Differential Geometry
Anders Kock
Synthetic Differential Geometry
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book, first published in 2006, details how limit processes can be represented algebraically.
Andere Kunden interessierten sich auch für
- MaxwellThe Methods of Plane Projective Geometry Based on the Use of General Homogenous Coordinates49,99 €
- Rudolf FritschCellular Structures in Topology84,99 €
- A. R. PearsDimension Theory of General Spaces40,99 €
- Bengt FornbergA Practical Guide to Pseudospectral Methods42,99 €
- M. H. A. NewmanElements of the Topology of Plane Sets of Points33,99 €
- Lee A. Segel (ed.)Biological Kinetics72,99 €
- Louis LyonsAll You Wanted to Know about Mathematics But Were Afraid to Ask86,99 €
-
-
-
This book, first published in 2006, details how limit processes can be represented algebraically.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- 2nd edition
- Seitenzahl: 246
- Erscheinungstermin: 12. März 2013
- Englisch
- Abmessung: 229mm x 152mm x 15mm
- Gewicht: 405g
- ISBN-13: 9780521687386
- ISBN-10: 0521687381
- Artikelnr.: 22734580
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- 2nd edition
- Seitenzahl: 246
- Erscheinungstermin: 12. März 2013
- Englisch
- Abmessung: 229mm x 152mm x 15mm
- Gewicht: 405g
- ISBN-13: 9780521687386
- ISBN-10: 0521687381
- Artikelnr.: 22734580
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Anders Kock is an Associate Professor of Mathematics at the University of Aarhus, Denmark.
Preface to the second edition (2005)
Preface to the first edition (1981)
Part I. The Synthetic Ttheory: 1. Basic structure on the geometric line
2. Differential calculus
3. Taylor formulae - one variable
4. Partial derivatives
5. Taylor formulae - several variables
6. Some important infinitesimal objects
7. Tangent vectors and the tangent bundle
8. Vector fields
9. Lie bracket
10. Directional derivatives
11. Functional analysis - Jacobi identity
12. The comprehensive axiom
13. Order and integration
14. Forms and currents
15. Currents - Stokes' theorem
16. Weil algebras
17. Formal manifolds
18. Differential forms in terms of simplices
19. Open covers
20. Differential forms as quantities
21. Pure geometry
Part II. Categorical Logic: 1. Generalized elements
2. Satisfaction (1)
3. Extensions and descriptions
4. Semantics of function objects
5. Axiom 1 revisited
6. Comma categories
7. Dense class of generators
8. Satisfaction (2)
9. Geometric theories
Part III. Models: 1. Models for axioms 1, 2, and 3
2. Models for epsilon-stable geometric theories
3. Well-adapted models (1)
4. Well-adapted models (2)
5. The algebraic theory of smooth functions
6. Germ-determined T-infinity-algebras
7. The open cover topology
8. Construction of well-adapted models
9. Manifolds with boundary
10. Field property - germ algebras
11. Order and integration in cahiers topos
Appendices
Bibliography
Index.
Preface to the first edition (1981)
Part I. The Synthetic Ttheory: 1. Basic structure on the geometric line
2. Differential calculus
3. Taylor formulae - one variable
4. Partial derivatives
5. Taylor formulae - several variables
6. Some important infinitesimal objects
7. Tangent vectors and the tangent bundle
8. Vector fields
9. Lie bracket
10. Directional derivatives
11. Functional analysis - Jacobi identity
12. The comprehensive axiom
13. Order and integration
14. Forms and currents
15. Currents - Stokes' theorem
16. Weil algebras
17. Formal manifolds
18. Differential forms in terms of simplices
19. Open covers
20. Differential forms as quantities
21. Pure geometry
Part II. Categorical Logic: 1. Generalized elements
2. Satisfaction (1)
3. Extensions and descriptions
4. Semantics of function objects
5. Axiom 1 revisited
6. Comma categories
7. Dense class of generators
8. Satisfaction (2)
9. Geometric theories
Part III. Models: 1. Models for axioms 1, 2, and 3
2. Models for epsilon-stable geometric theories
3. Well-adapted models (1)
4. Well-adapted models (2)
5. The algebraic theory of smooth functions
6. Germ-determined T-infinity-algebras
7. The open cover topology
8. Construction of well-adapted models
9. Manifolds with boundary
10. Field property - germ algebras
11. Order and integration in cahiers topos
Appendices
Bibliography
Index.
Preface to the second edition (2005)
Preface to the first edition (1981)
Part I. The Synthetic Ttheory: 1. Basic structure on the geometric line
2. Differential calculus
3. Taylor formulae - one variable
4. Partial derivatives
5. Taylor formulae - several variables
6. Some important infinitesimal objects
7. Tangent vectors and the tangent bundle
8. Vector fields
9. Lie bracket
10. Directional derivatives
11. Functional analysis - Jacobi identity
12. The comprehensive axiom
13. Order and integration
14. Forms and currents
15. Currents - Stokes' theorem
16. Weil algebras
17. Formal manifolds
18. Differential forms in terms of simplices
19. Open covers
20. Differential forms as quantities
21. Pure geometry
Part II. Categorical Logic: 1. Generalized elements
2. Satisfaction (1)
3. Extensions and descriptions
4. Semantics of function objects
5. Axiom 1 revisited
6. Comma categories
7. Dense class of generators
8. Satisfaction (2)
9. Geometric theories
Part III. Models: 1. Models for axioms 1, 2, and 3
2. Models for epsilon-stable geometric theories
3. Well-adapted models (1)
4. Well-adapted models (2)
5. The algebraic theory of smooth functions
6. Germ-determined T-infinity-algebras
7. The open cover topology
8. Construction of well-adapted models
9. Manifolds with boundary
10. Field property - germ algebras
11. Order and integration in cahiers topos
Appendices
Bibliography
Index.
Preface to the first edition (1981)
Part I. The Synthetic Ttheory: 1. Basic structure on the geometric line
2. Differential calculus
3. Taylor formulae - one variable
4. Partial derivatives
5. Taylor formulae - several variables
6. Some important infinitesimal objects
7. Tangent vectors and the tangent bundle
8. Vector fields
9. Lie bracket
10. Directional derivatives
11. Functional analysis - Jacobi identity
12. The comprehensive axiom
13. Order and integration
14. Forms and currents
15. Currents - Stokes' theorem
16. Weil algebras
17. Formal manifolds
18. Differential forms in terms of simplices
19. Open covers
20. Differential forms as quantities
21. Pure geometry
Part II. Categorical Logic: 1. Generalized elements
2. Satisfaction (1)
3. Extensions and descriptions
4. Semantics of function objects
5. Axiom 1 revisited
6. Comma categories
7. Dense class of generators
8. Satisfaction (2)
9. Geometric theories
Part III. Models: 1. Models for axioms 1, 2, and 3
2. Models for epsilon-stable geometric theories
3. Well-adapted models (1)
4. Well-adapted models (2)
5. The algebraic theory of smooth functions
6. Germ-determined T-infinity-algebras
7. The open cover topology
8. Construction of well-adapted models
9. Manifolds with boundary
10. Field property - germ algebras
11. Order and integration in cahiers topos
Appendices
Bibliography
Index.