88,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
44 °P sammeln
  • Broschiertes Buch

This book is the first publication to widely introduce the contributions of nanoarchitectonics to the development of functional materials and systems. The book opens up pathways to novel nanotechnology based on bottom-up techniques. In fields of nanotechnology, theoretical and practical limitations are expected in the bottom-up nanofabrication process. Instead, some supramolecular processes for nano- and microstructure formation including molecular recognition, self-assembly, and template synthesis have gained great attention as novel key technologies to break through expected limitations in…mehr

Produktbeschreibung
This book is the first publication to widely introduce the contributions of nanoarchitectonics to the development of functional materials and systems. The book opens up pathways to novel nanotechnology based on bottom-up techniques. In fields of nanotechnology, theoretical and practical limitations are expected in the bottom-up nanofabrication process. Instead, some supramolecular processes for nano- and microstructure formation including molecular recognition, self-assembly, and template synthesis have gained great attention as novel key technologies to break through expected limitations in current nanotechnology. This volume describes future images of nanotechnology and related materials and device science as well as practical applications for energy and biotechnology. Readers including specialists, non-specialists, graduate students, and undergraduate students can focus on the parts of the book that interest and concern them most. Target fields include materials chemistry, organic chemistry, physical chemistry, nanotechnology, and even biotechnology.
Autorenporträt
Yutaka Wakayama (National Institute for Materials Science) Yutaka Wakayama received his PhD degree from University of Tsukuba on 1998. He is currently the leader of Quantum Device Engineering Group of World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), the National Institute for Materials Science (NIMS). His research is oriented to fundamental studies on molecular assemblies in various dimensions and their application to optoelectronic devices: crystalline and electronic structure of molecular superlattice, carrier transport through directed- and self-assembled molecular wires, STM study on two-dimensional supermolecules, molecular quantum dot for single-electron devices, and advanced functional organic field-effect transistors. He has been appointed as a professor of Kyushu University since 2009. Katsuhiko Ariga (National Institute for Materials Science, The University of Tokyo) World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan Katsuhiko Ariga received his PhD degree from Tokyo Institute of Technology. He is currently the Director of Supermolecules Group and Principal Investigator of World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), the National Institute for Materials Science (NIMS). His research is oriented to supramolecular chemistry, surface science, and functional nanomaterials (Lanmguir-Blodgett film, layer-by-layer assembly, self-organized materials, sensing & drug delivery, molecular recognition, mesoporous material etc.) and is now trying to combine them into unified field for world-surprise. He is editors and editorial advisory members of ca. 20 scientific journals. He is Fellow of Royal Societ of Chemistry, Nice-Step Reseracher (2010), Highly Cited Reseracher, and a member of World Economic Forum Expert Network. Since 2017, he is also appointed as a professor of The University of Tokyo.