74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Gebundenes Buch

A genuinely useful text that gives an overview of the state-of-the-art in system-level design trade-off explorations for concurrent tasks running on embedded heterogeneous multiple processors. The targeted application domain covers complex embedded real-time multi-media and communication applications. This material is mainly based on research at IMEC and its international university network partners in this area over the last decade. In all, the material those in the digital signal processing industry will find here is bang up-to-date.
The main intention of this book is to give an
…mehr

Produktbeschreibung
A genuinely useful text that gives an overview of the state-of-the-art in system-level design trade-off explorations for concurrent tasks running on embedded heterogeneous multiple processors. The targeted application domain covers complex embedded real-time multi-media and communication applications. This material is mainly based on research at IMEC and its international university network partners in this area over the last decade. In all, the material those in the digital signal processing industry will find here is bang up-to-date.
The main intention of this book is to give an impression of the state of the art in energy-aware task-scheduling-related issues for very dynamic emb- ded real-time processing applications. The material is based on research at IMEC in this area in the period 1999-2006, with a very extensive state-- the-art overview. It can be viewed as a follow-up of the earlier "Modeling, veri?cation and exploration of task-level concurrency in real-time embedded systems" book [234] that was published in 1999 based on the task-level m- eling work at IMEC. In order to deal with the stringent timing requirements, the cost-sensitivity and the dynamic characteristics of our target domain, we have again adopted a target architecture style (i. e. , heterogeneous mul- processor) and a systematic methodology to make the exploration and op- mization of such systems feasible. But this time our focus is mainly on p- viding practical work ?ow out of the (abstract) general ?ow from previous book and also the relevant scheduling techniques for each step of this ?ow. Our approach is very heavily application-driven which is illustrated by several realistic demonstrators. Moreover, the book addresses only the steps above the traditional real-time operating systems (RTOS), which are mainly focused on correct solutions for dispatching tasks. Our methodology is nearly fully independent of the implementations in the RTOS so it is va- able for the realization on those existing embedded systems where legacy applications and underlying RTOS have been developed.
Autorenporträt
Francky Catthoor is a leading researcher at IMEC and is very well established within the EDA community. He is IEEE Fellow and has edited and authored 6 books for Springer/Kluwer.