164,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Broschiertes Buch

Systems Immunology and Infection Microbiology provides a large amount of biological system models, diagrams and flowcharts to illustrate development procedures and help users understand the results of systems immunology and infection microbiology. Chapters discuss systems immunology, systems infection microbiology, systematic inflammation and immune responses in restoration and regeneration process, systems' innate and adaptive immunity in infection process, systematic genetic and epigenetic pathogenic/defensive mechanism during bacterial infection on human cells is introduced, and the…mehr

Produktbeschreibung
Systems Immunology and Infection Microbiology provides a large amount of biological system models, diagrams and flowcharts to illustrate development procedures and help users understand the results of systems immunology and infection microbiology. Chapters discuss systems immunology, systems infection microbiology, systematic inflammation and immune responses in restoration and regeneration process, systems' innate and adaptive immunity in infection process, systematic genetic and epigenetic pathogenic/defensive mechanism during bacterial infection on human cells is introduced, and the systematic genetic and epigenetic pathogenic/defensive mechanisms during viral infection on human cells. This book provides new big data-driven and systems-driven systems immunology and infection microbiology to researchers applying systems biology and bioinformatics in their work. It is also invaluable to several members of biomedical field who are interested in learning more about those approaches.
Autorenporträt
Bor-Sen Chen received B.S. degree of electrical Engineering from Tatung Institute of Technology in 1970, M.S. degree of Geophysics from National Central University in 1973, and PhD in Electrical Engineering from University of Southern California in 1982. He is an expert on the topic of nonlinear robust control and filter designs based on stochastic Nash game theory to override the influence of intrinsic random fluctuations and attenuate the effect of environmental disturbances, which can be applied to evolutionary game strategies of biological networks under natural selection to respond to random genetic variations and environmental disturbances in the evolutionary process. Prof. Chen had audited more than 10 courses of biology before his research in systems biology. He has published about 100 papers in bioinformatics and systems biology. Further, he have published more than 100 papers in system theory and control, and more than 80 papers of signal processing and communication. In the last three years, he has also published 7 monographs. He was elected to an IEEE Fellow in 2001 and became an IEEE Life Fellow in 2014.