- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
"This book is a great demonstration of this powerful approach and how it can make a meaningful difference in any type of business. It takes a dedicated engineering approach to implement, but the payback in customer satisfaction and growth is dramatic."Lou Giuliano, chairman, president, and CEO, ITT Industries No other single volume presents the full breadth of founding beliefs behind the successful engineering practices used by today's leading companies. Helpful to companies in both manufacturing and service industries, Taguchi's Quality Engineering Handbook provides accessible material on…mehr
Andere Kunden interessierten sich auch für
- Jack B RevelleThe QFD Handbook216,99 €
- Anna C ThorntonVariation Risk Management128,99 €
- Forrest W. BreyfogleImplementing Six SIGMA157,99 €
- Kai YangQuality in the Era of Industry 4.0102,99 €
- Handbook of Reliability Engineering256,99 €
- The ASQ Certified Quality Improvement Associate Handbook113,99 €
- Boris GnedenkoProbabilistic Reliability Engineering216,99 €
-
-
-
"This book is a great demonstration of this powerful approach and how it can make a meaningful difference in any type of business. It takes a dedicated engineering approach to implement, but the payback in customer satisfaction and growth is dramatic."Lou Giuliano, chairman, president, and CEO, ITT Industries No other single volume presents the full breadth of founding beliefs behind the successful engineering practices used by today's leading companies. Helpful to companies in both manufacturing and service industries, Taguchi's Quality Engineering Handbook provides accessible material on such topics as: Quality loss function * On-line quality engineering * Signal-to-noise ratio * Robust engineering * Design of experiments (known as the "Taguchi method") * MahalanobisTaguchi Systems (MTS) * and more.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 1696
- Erscheinungstermin: 1. November 2004
- Englisch
- Abmessung: 240mm x 197mm x 65mm
- Gewicht: 2676g
- ISBN-13: 9780471413349
- ISBN-10: 0471413348
- Artikelnr.: 22468788
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 1696
- Erscheinungstermin: 1. November 2004
- Englisch
- Abmessung: 240mm x 197mm x 65mm
- Gewicht: 2676g
- ISBN-13: 9780471413349
- ISBN-10: 0471413348
- Artikelnr.: 22468788
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
GENICHI TAGUCHI, DSc, is Executive Director of the American Supplier Institute (ASI). Dr. Taguchi, an international authority in quality engineering, was awarded the prestigious Deming Prize in 1960 and the Willard F. Rockwell Medal in 1986. He was inducted into the World Level of the Hall of Fame for Engineering, Science, and Technology in 1998, and the Automotive Hall of Fame in 1997. He authored or coauthored forty books and more than 400 technical articles in leading journals. SUBIR CHOWDHURY, DEng, is Chairman and CEO of ASI Consulting Group. He is one of the world's foremost authorities in helping leaders achieve positive and measurable results in business process improvement. He has been awarded the Willard F. Rockwell Medal and was inducted into the World Level of the Hall of Fame for Engineering, Science, and Technology in 2004. Hailed by the New York Times as the "Leading Quality Expert," he is the author of eleven books, including The Power of Six Sigma, which has sold more than a million copies and has been translated into twenty languages. The late YUIN WU was executive director of ASI. He penned the first English (and Chinese) translations of Taguchi's work, and is credited with conducting the first Taguchi Methods experiments in the United States while working with private industry in California. He was active as a consultant in North America as well as many countries in Europe, South America, and Asia. He was the author of several books and hundreds of technical papers.
Preface.
Acknowledgments.
About the Authors.
SECTION 1. THEORY.
PART I: GENICHI TAGUCHI'S LATEST THINKING.
1. The 2nd Industrial Revolution and Information Technology.
2. Management for Quality Engineering.
3. Quality Engineering: Strategy in Research and Development.
4. Quality Engineering: The Taguchi Method.
PART II: QUALITY ENGINEERING: A HISTORICAL PERSPECTIVE.
5. Development of Quality Engineering in Japan.
6. History of Taguchi's Quality Engineering in the United States.
PART III: QUALITY LOSS FUNCTION.
7. Introduction to QLF.
8. Quality Loss Function for Different Quality Characteristics.
9. Specification Tolerancing.
10. Tolerance Design.
PART IV: SIGNAL-TO-NOISE RATIO.
11. Introduction to the Signal-to-Noise Ratio.
12. SN Ratios for Continuous Variables.
13. SN Ratio for Classified Attributes.
PART V: ROBUST ENGINEERING.
14. System Design.
15. Parameter Design.
16. Tolerance Design.
17. Robust Technology Development.
18. Robust Engineering: A Manager's Perspective.
19. Implementation Strategies.
PART VI: MAHALANOBIS-TAGUCHI SYSTEM (MTS).
20. Mahalanobis-Taguchi System.
PART VII: SOFTWARE TESTING AND APPLICATION.
21. Application of Taguchi Methods to Software System Testing.
PART VIII: ON-LINE QUALITY ENGINEERING.
22. Tolerancing and Quality Level.
23. Feedback Control Based on Product Characteristics.
24. Feedback Control of a Process Condition.
25. Process Diagnosis and Adjustment.
PART IX: EXPERIMENTAL REGRESSION.
26. Parameter Estimation in Regression Equations.
PART X: DESIGN OF EXPERIMENTS.
27. Introduction to Design of Experiments.
28. Fundamentals of Data Analysis.
29. Introduction to Analysis of Variance.
30. One-Way Layout..
31. Decomposition to Components with Unit Degrees of Freedom.
32. Two-Way Layout.
33. Two-Way Layout with Decomposition.
34. Two-Way Layout with Repetition.
35. Introduction to Orthogonal Arrays.
36. Layout of Orthogonal Arrays Using Linear Graphs.
37. Incomplete Data.
38. Youden Squares.
SECTION 2. APPLICATION (CASE STUDIES).
PART I: ROBUST ENGINEERING: CHEMICAL APPLICATIONS.
Biochemistry.
Case 1. Optimization of Bean Sprouting Conditions by Parameter Design.
Case 2. Optimization of Small Algae Production by Parameter Design.
Chemical Reaction.
Case 3. Optimization of Polymerization Reactions.
Case 4. Evaluation of Photographic Systems by Dynamic Operating Window.
Measurement.
Case 5. Application of Dynamic Optimization in Ultra-Trace Analysis.
Case 6. Evaluation of Component Separation Using a Dynamic Operating
Window.
Case 7. Optimization of the Measuring Method for Granule Strength.
Case 8. A Detection of Thermoresistant Bacteria.
Pharmacology.
Case 9. Optimization of Model Ointment Prescriptions for in Vitro
Percutaneous Permeation.
Separation.
Case 10. Use of a Dynamic Operating Window for Herbal Medicine Granulation.
Case 11. Particle-Size Adjustment in a Fine Grinding Process for Developer.
PART II: ROBUST ENGINEERING: ELECTRICAL APPLICATIONS.
Circuits.
Case 12. Design for Amplifier Stabilization.
Case 13. Parameter Design of Ceramic Oscillation Circuits.
Case 14. Evaluation Method of Electric Waveforms by Momentary Values.
Case 15. Robust Design for Frequency-Modulation Circuits.
Electronic Devices.
Case 16. Optimization of Blow-Off Charge Measurement Systems.
Case 17. Evaluation of the Generic Function of Film Capacitors.
Case 18. Parameter Design of Fine Line Patterning for IC Fabrication.
Case 19. Minimizing Variation in Pot Core Transformer Processing .
Case 20. Optimization of Back Contact of Power MOSFETs.
Electrophoto.
Case 21. Development of High-Quality Developers for Electrophotography.
Case 22. Functional Evaluation for the Electrophotographic Process.
PART III: ROBUST ENGINEERING: MECHANICAL APPLICATIONS.
Biomechanical.
Case 23. Biomechanical Comparison of Flexor Tendon Repairs..
Machining.
Case 24. Optimization of Machining Conditions by Electric Power.
Case 25. Development of Machining Technology for High Performance Steel by
Transformability.
Case 26. Transformability of Plastic Injection-Molded Gear.
Material Design.
Case 27. Optimization of a Felt Resist Paste Formula Used in Partial
Felting.
Case 28. Development of Friction Material for Automatic Transmissions.
Case 29. Parameter Design on a Foundry Process Using Green Sand.
Case 30. Development of Functional Material by Plasma Spraying.
Material Strength.
Case 31. Optimization of Two-Piece Gear Brazing Conditions.
Case 32. Optimization of Resistance Welding Conditions for Electronic
Components.
Case 33. Tile Manufacturing Using Industrial Waste.
Measurement
Case 34. Development of an Electrophotographic Toner Charging Function
Measuring System.
Case 35. Clear Vision by Robust Design.
Case 36. Optimization of Adhesion Condition of Resin Board and Copper
Plate.
Case 37. Optimization of a Wave Soldering Process.
Case 38. Optimization of Casting Conditions for Camshafts by Simulation.
Case 39. Optimization of Photoresist Profile Using Simulation.
Case 40. Optimization of a Deep Drawing Process.
Case 41. Robust Technology Development of an Encapsulation Process.
Case 42. Gas-Arc Stud Weld Process Parameter Optimization Utilizing Robust
Design..
Case 43. Optimization of Molding Conditions of Thick-Walled Products.
Case 44. Quality Improvement of Electro-Deposited Process for Magnet
Production.
Case 45. Optimization of an Electrical Encapsulation Process Through
Parameter Design.
Case 46. Development of Plastic Injection Molding Technology by
Transformability.
Product Development.
Case 47. Stability Design of Shutter Mechanisms of Single-Use Cameras by
Simulation.
Case 48. Optimization of a Clutch Disc Torsional Damping System Design.
Case 49. Direct Injection Diesel Injector Optimization.
Case 50. Optimization of Disc Blade Mobile Cutters.
Case 51. D-VHS Tape Travel Stability.
Case 52. Functionality Evaluation of Spindles.
Case 53. Improving Minivan Rear Window Latching.
Case 54. Linear Proportional Purge Solenoids.
Case 55. Optimization of a Linear Actuator Using Simulation.
Case 56. Functionality of Evaluation of Articulated Robots.
Case 57. New Ultra-Miniature EMS Tact Switch Optimization.
Case 58. Optimization of an Electrical Connector Insulator Contact Housing.
Case 59. Air Flow Noise Reduction of Intercoolers.
Case 60. Reduction of Boosting Force Variation of Brake Boosters.
Case 61. Reduction of Chattering Noise in 47-Feeder Valves.
Case 62. Optimal Design for a Small DC Motor.
Case 63. Steering System On-Center Robustness.
Case 64. Improvement of the Taste of Omelets.
Case 65. Wiper System Chatter Reduction.
Other.
Case 66. Fabrication Line Capacity Planning Using a Robust Design Dynamic
Model.
PART IV: MAHALANOBIS-TAGUCHI SYSTEM (MTS).
Human Performance.
Case 67. Prediction of Programming Ability from a Questionnaire Using MTS.
Case 68. Technique for the Evaluation of Programming Ability Based on MTS.
Inspection.
Case 69. Application of Mahalanobis Distance for the Automatic Inspection
of Solder Joints.
Case 70. Application of MTS to Thermal Ink Jet Image Quality Inspection.
Case 71. Detector Switch Characterization Using MTS.
Case 72. Exhaust Sensor Output Characterization Using MTS.
Case 73. Defects Detection Using MTS.
Medical Diagnosis.
Case 74. Application of Mahalanobis Distance to the Measurement of Drug
Efficacy.
Case 75. Use of Mahalanobis Distance in Medical Diagnosis.
Case 76. Prediction of Urinary Continence Recovery Among Patients with
Brain Disease Using Mahalanobis Distance.
Case 77. Mahalanobis Distance Application for Health Examination and
Treatment of Missing Data.
Case 78. Forecasting Future Health from Existing Medical Examination
Results Using MTS..
Product.
Case 79. Character Recognition Using Mahalanobis Distance.
Case 80. Printed Letter Inspection Technique Using MTS.
PART V: SOFTWARE TESTING AND APPLICATION.
Algorithms.
Case 81. Optimization of a Diesel Engine Software Control Strategy.
Case 82. Optimizing Video Compression.
Computer Systems.
Case 83. Robust Optimization of a Real-Time Operating System Using
Parameter Design.
Software.
Case 84. Evaluation of Capability and Error in Programming.
Case 85. Evaluation of Programmer's Ability in Software Production.
Case 86. Robust Testing of Electronic Warfare Systems.
Case 87. Streamlining of Debugging Software Using an Orthogonal Array.
PART VI: ON-LINE QUALITY ENGINEERING.
On-Line
Case 88. Application of On-Line Quality Engineering to the Automobile
Manufacturing Process.
Case 89. Design of Preventive Maintenance of a Bucket Elevator Through
Simultaneous Use of Periodic Maintenance and Checkup.
Case 90. Feedback Control by Quality Characteristics.
Case 91. Control of Mechanical Component Parts in a Manufacturing Process.
Case 92. Semiconductor Rectifier Manufacturing by On-Line Quality
Engineering.
PART VII: MISCELLANEOUS.
Miscellaneous.
Case 93. Estimation of Working Hours in Software Development.
Case 94. Application of Linear and Nonlinear Regression Equations for
Engineering.
SECTION 3. TAGUCHI'S METHODS VERSUS OTHER QUALITY PHILOSOPHIES.
Chapter 39. Quality Management in Japan
Chapter 40. Deming and Taguchi's Quality Engineering.
Chapter 41. Enhancing Robust Design with the Aid of TRIZ and Axiomatic
Design.
Chapter 42. Testing and Quality Engineering.
Chapter 43. Total Product Development and Taguchi's Quality Engineering.
Chapter 44. Role of Taguchi Methods in Design for Six Sigma.
Appendix A: Orthogonal Array and Linear Graphs. Tools for Quality
Engineering.
Appendix B: Equations for On-Line Process Control.
Appendix C: Orthogonal Array and Linear Graphs for Chapter 38.
Glossary.
Bibliopgraphy.
Index.
Acknowledgments.
About the Authors.
SECTION 1. THEORY.
PART I: GENICHI TAGUCHI'S LATEST THINKING.
1. The 2nd Industrial Revolution and Information Technology.
2. Management for Quality Engineering.
3. Quality Engineering: Strategy in Research and Development.
4. Quality Engineering: The Taguchi Method.
PART II: QUALITY ENGINEERING: A HISTORICAL PERSPECTIVE.
5. Development of Quality Engineering in Japan.
6. History of Taguchi's Quality Engineering in the United States.
PART III: QUALITY LOSS FUNCTION.
7. Introduction to QLF.
8. Quality Loss Function for Different Quality Characteristics.
9. Specification Tolerancing.
10. Tolerance Design.
PART IV: SIGNAL-TO-NOISE RATIO.
11. Introduction to the Signal-to-Noise Ratio.
12. SN Ratios for Continuous Variables.
13. SN Ratio for Classified Attributes.
PART V: ROBUST ENGINEERING.
14. System Design.
15. Parameter Design.
16. Tolerance Design.
17. Robust Technology Development.
18. Robust Engineering: A Manager's Perspective.
19. Implementation Strategies.
PART VI: MAHALANOBIS-TAGUCHI SYSTEM (MTS).
20. Mahalanobis-Taguchi System.
PART VII: SOFTWARE TESTING AND APPLICATION.
21. Application of Taguchi Methods to Software System Testing.
PART VIII: ON-LINE QUALITY ENGINEERING.
22. Tolerancing and Quality Level.
23. Feedback Control Based on Product Characteristics.
24. Feedback Control of a Process Condition.
25. Process Diagnosis and Adjustment.
PART IX: EXPERIMENTAL REGRESSION.
26. Parameter Estimation in Regression Equations.
PART X: DESIGN OF EXPERIMENTS.
27. Introduction to Design of Experiments.
28. Fundamentals of Data Analysis.
29. Introduction to Analysis of Variance.
30. One-Way Layout..
31. Decomposition to Components with Unit Degrees of Freedom.
32. Two-Way Layout.
33. Two-Way Layout with Decomposition.
34. Two-Way Layout with Repetition.
35. Introduction to Orthogonal Arrays.
36. Layout of Orthogonal Arrays Using Linear Graphs.
37. Incomplete Data.
38. Youden Squares.
SECTION 2. APPLICATION (CASE STUDIES).
PART I: ROBUST ENGINEERING: CHEMICAL APPLICATIONS.
Biochemistry.
Case 1. Optimization of Bean Sprouting Conditions by Parameter Design.
Case 2. Optimization of Small Algae Production by Parameter Design.
Chemical Reaction.
Case 3. Optimization of Polymerization Reactions.
Case 4. Evaluation of Photographic Systems by Dynamic Operating Window.
Measurement.
Case 5. Application of Dynamic Optimization in Ultra-Trace Analysis.
Case 6. Evaluation of Component Separation Using a Dynamic Operating
Window.
Case 7. Optimization of the Measuring Method for Granule Strength.
Case 8. A Detection of Thermoresistant Bacteria.
Pharmacology.
Case 9. Optimization of Model Ointment Prescriptions for in Vitro
Percutaneous Permeation.
Separation.
Case 10. Use of a Dynamic Operating Window for Herbal Medicine Granulation.
Case 11. Particle-Size Adjustment in a Fine Grinding Process for Developer.
PART II: ROBUST ENGINEERING: ELECTRICAL APPLICATIONS.
Circuits.
Case 12. Design for Amplifier Stabilization.
Case 13. Parameter Design of Ceramic Oscillation Circuits.
Case 14. Evaluation Method of Electric Waveforms by Momentary Values.
Case 15. Robust Design for Frequency-Modulation Circuits.
Electronic Devices.
Case 16. Optimization of Blow-Off Charge Measurement Systems.
Case 17. Evaluation of the Generic Function of Film Capacitors.
Case 18. Parameter Design of Fine Line Patterning for IC Fabrication.
Case 19. Minimizing Variation in Pot Core Transformer Processing .
Case 20. Optimization of Back Contact of Power MOSFETs.
Electrophoto.
Case 21. Development of High-Quality Developers for Electrophotography.
Case 22. Functional Evaluation for the Electrophotographic Process.
PART III: ROBUST ENGINEERING: MECHANICAL APPLICATIONS.
Biomechanical.
Case 23. Biomechanical Comparison of Flexor Tendon Repairs..
Machining.
Case 24. Optimization of Machining Conditions by Electric Power.
Case 25. Development of Machining Technology for High Performance Steel by
Transformability.
Case 26. Transformability of Plastic Injection-Molded Gear.
Material Design.
Case 27. Optimization of a Felt Resist Paste Formula Used in Partial
Felting.
Case 28. Development of Friction Material for Automatic Transmissions.
Case 29. Parameter Design on a Foundry Process Using Green Sand.
Case 30. Development of Functional Material by Plasma Spraying.
Material Strength.
Case 31. Optimization of Two-Piece Gear Brazing Conditions.
Case 32. Optimization of Resistance Welding Conditions for Electronic
Components.
Case 33. Tile Manufacturing Using Industrial Waste.
Measurement
Case 34. Development of an Electrophotographic Toner Charging Function
Measuring System.
Case 35. Clear Vision by Robust Design.
Case 36. Optimization of Adhesion Condition of Resin Board and Copper
Plate.
Case 37. Optimization of a Wave Soldering Process.
Case 38. Optimization of Casting Conditions for Camshafts by Simulation.
Case 39. Optimization of Photoresist Profile Using Simulation.
Case 40. Optimization of a Deep Drawing Process.
Case 41. Robust Technology Development of an Encapsulation Process.
Case 42. Gas-Arc Stud Weld Process Parameter Optimization Utilizing Robust
Design..
Case 43. Optimization of Molding Conditions of Thick-Walled Products.
Case 44. Quality Improvement of Electro-Deposited Process for Magnet
Production.
Case 45. Optimization of an Electrical Encapsulation Process Through
Parameter Design.
Case 46. Development of Plastic Injection Molding Technology by
Transformability.
Product Development.
Case 47. Stability Design of Shutter Mechanisms of Single-Use Cameras by
Simulation.
Case 48. Optimization of a Clutch Disc Torsional Damping System Design.
Case 49. Direct Injection Diesel Injector Optimization.
Case 50. Optimization of Disc Blade Mobile Cutters.
Case 51. D-VHS Tape Travel Stability.
Case 52. Functionality Evaluation of Spindles.
Case 53. Improving Minivan Rear Window Latching.
Case 54. Linear Proportional Purge Solenoids.
Case 55. Optimization of a Linear Actuator Using Simulation.
Case 56. Functionality of Evaluation of Articulated Robots.
Case 57. New Ultra-Miniature EMS Tact Switch Optimization.
Case 58. Optimization of an Electrical Connector Insulator Contact Housing.
Case 59. Air Flow Noise Reduction of Intercoolers.
Case 60. Reduction of Boosting Force Variation of Brake Boosters.
Case 61. Reduction of Chattering Noise in 47-Feeder Valves.
Case 62. Optimal Design for a Small DC Motor.
Case 63. Steering System On-Center Robustness.
Case 64. Improvement of the Taste of Omelets.
Case 65. Wiper System Chatter Reduction.
Other.
Case 66. Fabrication Line Capacity Planning Using a Robust Design Dynamic
Model.
PART IV: MAHALANOBIS-TAGUCHI SYSTEM (MTS).
Human Performance.
Case 67. Prediction of Programming Ability from a Questionnaire Using MTS.
Case 68. Technique for the Evaluation of Programming Ability Based on MTS.
Inspection.
Case 69. Application of Mahalanobis Distance for the Automatic Inspection
of Solder Joints.
Case 70. Application of MTS to Thermal Ink Jet Image Quality Inspection.
Case 71. Detector Switch Characterization Using MTS.
Case 72. Exhaust Sensor Output Characterization Using MTS.
Case 73. Defects Detection Using MTS.
Medical Diagnosis.
Case 74. Application of Mahalanobis Distance to the Measurement of Drug
Efficacy.
Case 75. Use of Mahalanobis Distance in Medical Diagnosis.
Case 76. Prediction of Urinary Continence Recovery Among Patients with
Brain Disease Using Mahalanobis Distance.
Case 77. Mahalanobis Distance Application for Health Examination and
Treatment of Missing Data.
Case 78. Forecasting Future Health from Existing Medical Examination
Results Using MTS..
Product.
Case 79. Character Recognition Using Mahalanobis Distance.
Case 80. Printed Letter Inspection Technique Using MTS.
PART V: SOFTWARE TESTING AND APPLICATION.
Algorithms.
Case 81. Optimization of a Diesel Engine Software Control Strategy.
Case 82. Optimizing Video Compression.
Computer Systems.
Case 83. Robust Optimization of a Real-Time Operating System Using
Parameter Design.
Software.
Case 84. Evaluation of Capability and Error in Programming.
Case 85. Evaluation of Programmer's Ability in Software Production.
Case 86. Robust Testing of Electronic Warfare Systems.
Case 87. Streamlining of Debugging Software Using an Orthogonal Array.
PART VI: ON-LINE QUALITY ENGINEERING.
On-Line
Case 88. Application of On-Line Quality Engineering to the Automobile
Manufacturing Process.
Case 89. Design of Preventive Maintenance of a Bucket Elevator Through
Simultaneous Use of Periodic Maintenance and Checkup.
Case 90. Feedback Control by Quality Characteristics.
Case 91. Control of Mechanical Component Parts in a Manufacturing Process.
Case 92. Semiconductor Rectifier Manufacturing by On-Line Quality
Engineering.
PART VII: MISCELLANEOUS.
Miscellaneous.
Case 93. Estimation of Working Hours in Software Development.
Case 94. Application of Linear and Nonlinear Regression Equations for
Engineering.
SECTION 3. TAGUCHI'S METHODS VERSUS OTHER QUALITY PHILOSOPHIES.
Chapter 39. Quality Management in Japan
Chapter 40. Deming and Taguchi's Quality Engineering.
Chapter 41. Enhancing Robust Design with the Aid of TRIZ and Axiomatic
Design.
Chapter 42. Testing and Quality Engineering.
Chapter 43. Total Product Development and Taguchi's Quality Engineering.
Chapter 44. Role of Taguchi Methods in Design for Six Sigma.
Appendix A: Orthogonal Array and Linear Graphs. Tools for Quality
Engineering.
Appendix B: Equations for On-Line Process Control.
Appendix C: Orthogonal Array and Linear Graphs for Chapter 38.
Glossary.
Bibliopgraphy.
Index.
Preface.
Acknowledgments.
About the Authors.
SECTION 1. THEORY.
PART I: GENICHI TAGUCHI'S LATEST THINKING.
1. The 2nd Industrial Revolution and Information Technology.
2. Management for Quality Engineering.
3. Quality Engineering: Strategy in Research and Development.
4. Quality Engineering: The Taguchi Method.
PART II: QUALITY ENGINEERING: A HISTORICAL PERSPECTIVE.
5. Development of Quality Engineering in Japan.
6. History of Taguchi's Quality Engineering in the United States.
PART III: QUALITY LOSS FUNCTION.
7. Introduction to QLF.
8. Quality Loss Function for Different Quality Characteristics.
9. Specification Tolerancing.
10. Tolerance Design.
PART IV: SIGNAL-TO-NOISE RATIO.
11. Introduction to the Signal-to-Noise Ratio.
12. SN Ratios for Continuous Variables.
13. SN Ratio for Classified Attributes.
PART V: ROBUST ENGINEERING.
14. System Design.
15. Parameter Design.
16. Tolerance Design.
17. Robust Technology Development.
18. Robust Engineering: A Manager's Perspective.
19. Implementation Strategies.
PART VI: MAHALANOBIS-TAGUCHI SYSTEM (MTS).
20. Mahalanobis-Taguchi System.
PART VII: SOFTWARE TESTING AND APPLICATION.
21. Application of Taguchi Methods to Software System Testing.
PART VIII: ON-LINE QUALITY ENGINEERING.
22. Tolerancing and Quality Level.
23. Feedback Control Based on Product Characteristics.
24. Feedback Control of a Process Condition.
25. Process Diagnosis and Adjustment.
PART IX: EXPERIMENTAL REGRESSION.
26. Parameter Estimation in Regression Equations.
PART X: DESIGN OF EXPERIMENTS.
27. Introduction to Design of Experiments.
28. Fundamentals of Data Analysis.
29. Introduction to Analysis of Variance.
30. One-Way Layout..
31. Decomposition to Components with Unit Degrees of Freedom.
32. Two-Way Layout.
33. Two-Way Layout with Decomposition.
34. Two-Way Layout with Repetition.
35. Introduction to Orthogonal Arrays.
36. Layout of Orthogonal Arrays Using Linear Graphs.
37. Incomplete Data.
38. Youden Squares.
SECTION 2. APPLICATION (CASE STUDIES).
PART I: ROBUST ENGINEERING: CHEMICAL APPLICATIONS.
Biochemistry.
Case 1. Optimization of Bean Sprouting Conditions by Parameter Design.
Case 2. Optimization of Small Algae Production by Parameter Design.
Chemical Reaction.
Case 3. Optimization of Polymerization Reactions.
Case 4. Evaluation of Photographic Systems by Dynamic Operating Window.
Measurement.
Case 5. Application of Dynamic Optimization in Ultra-Trace Analysis.
Case 6. Evaluation of Component Separation Using a Dynamic Operating
Window.
Case 7. Optimization of the Measuring Method for Granule Strength.
Case 8. A Detection of Thermoresistant Bacteria.
Pharmacology.
Case 9. Optimization of Model Ointment Prescriptions for in Vitro
Percutaneous Permeation.
Separation.
Case 10. Use of a Dynamic Operating Window for Herbal Medicine Granulation.
Case 11. Particle-Size Adjustment in a Fine Grinding Process for Developer.
PART II: ROBUST ENGINEERING: ELECTRICAL APPLICATIONS.
Circuits.
Case 12. Design for Amplifier Stabilization.
Case 13. Parameter Design of Ceramic Oscillation Circuits.
Case 14. Evaluation Method of Electric Waveforms by Momentary Values.
Case 15. Robust Design for Frequency-Modulation Circuits.
Electronic Devices.
Case 16. Optimization of Blow-Off Charge Measurement Systems.
Case 17. Evaluation of the Generic Function of Film Capacitors.
Case 18. Parameter Design of Fine Line Patterning for IC Fabrication.
Case 19. Minimizing Variation in Pot Core Transformer Processing .
Case 20. Optimization of Back Contact of Power MOSFETs.
Electrophoto.
Case 21. Development of High-Quality Developers for Electrophotography.
Case 22. Functional Evaluation for the Electrophotographic Process.
PART III: ROBUST ENGINEERING: MECHANICAL APPLICATIONS.
Biomechanical.
Case 23. Biomechanical Comparison of Flexor Tendon Repairs..
Machining.
Case 24. Optimization of Machining Conditions by Electric Power.
Case 25. Development of Machining Technology for High Performance Steel by
Transformability.
Case 26. Transformability of Plastic Injection-Molded Gear.
Material Design.
Case 27. Optimization of a Felt Resist Paste Formula Used in Partial
Felting.
Case 28. Development of Friction Material for Automatic Transmissions.
Case 29. Parameter Design on a Foundry Process Using Green Sand.
Case 30. Development of Functional Material by Plasma Spraying.
Material Strength.
Case 31. Optimization of Two-Piece Gear Brazing Conditions.
Case 32. Optimization of Resistance Welding Conditions for Electronic
Components.
Case 33. Tile Manufacturing Using Industrial Waste.
Measurement
Case 34. Development of an Electrophotographic Toner Charging Function
Measuring System.
Case 35. Clear Vision by Robust Design.
Case 36. Optimization of Adhesion Condition of Resin Board and Copper
Plate.
Case 37. Optimization of a Wave Soldering Process.
Case 38. Optimization of Casting Conditions for Camshafts by Simulation.
Case 39. Optimization of Photoresist Profile Using Simulation.
Case 40. Optimization of a Deep Drawing Process.
Case 41. Robust Technology Development of an Encapsulation Process.
Case 42. Gas-Arc Stud Weld Process Parameter Optimization Utilizing Robust
Design..
Case 43. Optimization of Molding Conditions of Thick-Walled Products.
Case 44. Quality Improvement of Electro-Deposited Process for Magnet
Production.
Case 45. Optimization of an Electrical Encapsulation Process Through
Parameter Design.
Case 46. Development of Plastic Injection Molding Technology by
Transformability.
Product Development.
Case 47. Stability Design of Shutter Mechanisms of Single-Use Cameras by
Simulation.
Case 48. Optimization of a Clutch Disc Torsional Damping System Design.
Case 49. Direct Injection Diesel Injector Optimization.
Case 50. Optimization of Disc Blade Mobile Cutters.
Case 51. D-VHS Tape Travel Stability.
Case 52. Functionality Evaluation of Spindles.
Case 53. Improving Minivan Rear Window Latching.
Case 54. Linear Proportional Purge Solenoids.
Case 55. Optimization of a Linear Actuator Using Simulation.
Case 56. Functionality of Evaluation of Articulated Robots.
Case 57. New Ultra-Miniature EMS Tact Switch Optimization.
Case 58. Optimization of an Electrical Connector Insulator Contact Housing.
Case 59. Air Flow Noise Reduction of Intercoolers.
Case 60. Reduction of Boosting Force Variation of Brake Boosters.
Case 61. Reduction of Chattering Noise in 47-Feeder Valves.
Case 62. Optimal Design for a Small DC Motor.
Case 63. Steering System On-Center Robustness.
Case 64. Improvement of the Taste of Omelets.
Case 65. Wiper System Chatter Reduction.
Other.
Case 66. Fabrication Line Capacity Planning Using a Robust Design Dynamic
Model.
PART IV: MAHALANOBIS-TAGUCHI SYSTEM (MTS).
Human Performance.
Case 67. Prediction of Programming Ability from a Questionnaire Using MTS.
Case 68. Technique for the Evaluation of Programming Ability Based on MTS.
Inspection.
Case 69. Application of Mahalanobis Distance for the Automatic Inspection
of Solder Joints.
Case 70. Application of MTS to Thermal Ink Jet Image Quality Inspection.
Case 71. Detector Switch Characterization Using MTS.
Case 72. Exhaust Sensor Output Characterization Using MTS.
Case 73. Defects Detection Using MTS.
Medical Diagnosis.
Case 74. Application of Mahalanobis Distance to the Measurement of Drug
Efficacy.
Case 75. Use of Mahalanobis Distance in Medical Diagnosis.
Case 76. Prediction of Urinary Continence Recovery Among Patients with
Brain Disease Using Mahalanobis Distance.
Case 77. Mahalanobis Distance Application for Health Examination and
Treatment of Missing Data.
Case 78. Forecasting Future Health from Existing Medical Examination
Results Using MTS..
Product.
Case 79. Character Recognition Using Mahalanobis Distance.
Case 80. Printed Letter Inspection Technique Using MTS.
PART V: SOFTWARE TESTING AND APPLICATION.
Algorithms.
Case 81. Optimization of a Diesel Engine Software Control Strategy.
Case 82. Optimizing Video Compression.
Computer Systems.
Case 83. Robust Optimization of a Real-Time Operating System Using
Parameter Design.
Software.
Case 84. Evaluation of Capability and Error in Programming.
Case 85. Evaluation of Programmer's Ability in Software Production.
Case 86. Robust Testing of Electronic Warfare Systems.
Case 87. Streamlining of Debugging Software Using an Orthogonal Array.
PART VI: ON-LINE QUALITY ENGINEERING.
On-Line
Case 88. Application of On-Line Quality Engineering to the Automobile
Manufacturing Process.
Case 89. Design of Preventive Maintenance of a Bucket Elevator Through
Simultaneous Use of Periodic Maintenance and Checkup.
Case 90. Feedback Control by Quality Characteristics.
Case 91. Control of Mechanical Component Parts in a Manufacturing Process.
Case 92. Semiconductor Rectifier Manufacturing by On-Line Quality
Engineering.
PART VII: MISCELLANEOUS.
Miscellaneous.
Case 93. Estimation of Working Hours in Software Development.
Case 94. Application of Linear and Nonlinear Regression Equations for
Engineering.
SECTION 3. TAGUCHI'S METHODS VERSUS OTHER QUALITY PHILOSOPHIES.
Chapter 39. Quality Management in Japan
Chapter 40. Deming and Taguchi's Quality Engineering.
Chapter 41. Enhancing Robust Design with the Aid of TRIZ and Axiomatic
Design.
Chapter 42. Testing and Quality Engineering.
Chapter 43. Total Product Development and Taguchi's Quality Engineering.
Chapter 44. Role of Taguchi Methods in Design for Six Sigma.
Appendix A: Orthogonal Array and Linear Graphs. Tools for Quality
Engineering.
Appendix B: Equations for On-Line Process Control.
Appendix C: Orthogonal Array and Linear Graphs for Chapter 38.
Glossary.
Bibliopgraphy.
Index.
Acknowledgments.
About the Authors.
SECTION 1. THEORY.
PART I: GENICHI TAGUCHI'S LATEST THINKING.
1. The 2nd Industrial Revolution and Information Technology.
2. Management for Quality Engineering.
3. Quality Engineering: Strategy in Research and Development.
4. Quality Engineering: The Taguchi Method.
PART II: QUALITY ENGINEERING: A HISTORICAL PERSPECTIVE.
5. Development of Quality Engineering in Japan.
6. History of Taguchi's Quality Engineering in the United States.
PART III: QUALITY LOSS FUNCTION.
7. Introduction to QLF.
8. Quality Loss Function for Different Quality Characteristics.
9. Specification Tolerancing.
10. Tolerance Design.
PART IV: SIGNAL-TO-NOISE RATIO.
11. Introduction to the Signal-to-Noise Ratio.
12. SN Ratios for Continuous Variables.
13. SN Ratio for Classified Attributes.
PART V: ROBUST ENGINEERING.
14. System Design.
15. Parameter Design.
16. Tolerance Design.
17. Robust Technology Development.
18. Robust Engineering: A Manager's Perspective.
19. Implementation Strategies.
PART VI: MAHALANOBIS-TAGUCHI SYSTEM (MTS).
20. Mahalanobis-Taguchi System.
PART VII: SOFTWARE TESTING AND APPLICATION.
21. Application of Taguchi Methods to Software System Testing.
PART VIII: ON-LINE QUALITY ENGINEERING.
22. Tolerancing and Quality Level.
23. Feedback Control Based on Product Characteristics.
24. Feedback Control of a Process Condition.
25. Process Diagnosis and Adjustment.
PART IX: EXPERIMENTAL REGRESSION.
26. Parameter Estimation in Regression Equations.
PART X: DESIGN OF EXPERIMENTS.
27. Introduction to Design of Experiments.
28. Fundamentals of Data Analysis.
29. Introduction to Analysis of Variance.
30. One-Way Layout..
31. Decomposition to Components with Unit Degrees of Freedom.
32. Two-Way Layout.
33. Two-Way Layout with Decomposition.
34. Two-Way Layout with Repetition.
35. Introduction to Orthogonal Arrays.
36. Layout of Orthogonal Arrays Using Linear Graphs.
37. Incomplete Data.
38. Youden Squares.
SECTION 2. APPLICATION (CASE STUDIES).
PART I: ROBUST ENGINEERING: CHEMICAL APPLICATIONS.
Biochemistry.
Case 1. Optimization of Bean Sprouting Conditions by Parameter Design.
Case 2. Optimization of Small Algae Production by Parameter Design.
Chemical Reaction.
Case 3. Optimization of Polymerization Reactions.
Case 4. Evaluation of Photographic Systems by Dynamic Operating Window.
Measurement.
Case 5. Application of Dynamic Optimization in Ultra-Trace Analysis.
Case 6. Evaluation of Component Separation Using a Dynamic Operating
Window.
Case 7. Optimization of the Measuring Method for Granule Strength.
Case 8. A Detection of Thermoresistant Bacteria.
Pharmacology.
Case 9. Optimization of Model Ointment Prescriptions for in Vitro
Percutaneous Permeation.
Separation.
Case 10. Use of a Dynamic Operating Window for Herbal Medicine Granulation.
Case 11. Particle-Size Adjustment in a Fine Grinding Process for Developer.
PART II: ROBUST ENGINEERING: ELECTRICAL APPLICATIONS.
Circuits.
Case 12. Design for Amplifier Stabilization.
Case 13. Parameter Design of Ceramic Oscillation Circuits.
Case 14. Evaluation Method of Electric Waveforms by Momentary Values.
Case 15. Robust Design for Frequency-Modulation Circuits.
Electronic Devices.
Case 16. Optimization of Blow-Off Charge Measurement Systems.
Case 17. Evaluation of the Generic Function of Film Capacitors.
Case 18. Parameter Design of Fine Line Patterning for IC Fabrication.
Case 19. Minimizing Variation in Pot Core Transformer Processing .
Case 20. Optimization of Back Contact of Power MOSFETs.
Electrophoto.
Case 21. Development of High-Quality Developers for Electrophotography.
Case 22. Functional Evaluation for the Electrophotographic Process.
PART III: ROBUST ENGINEERING: MECHANICAL APPLICATIONS.
Biomechanical.
Case 23. Biomechanical Comparison of Flexor Tendon Repairs..
Machining.
Case 24. Optimization of Machining Conditions by Electric Power.
Case 25. Development of Machining Technology for High Performance Steel by
Transformability.
Case 26. Transformability of Plastic Injection-Molded Gear.
Material Design.
Case 27. Optimization of a Felt Resist Paste Formula Used in Partial
Felting.
Case 28. Development of Friction Material for Automatic Transmissions.
Case 29. Parameter Design on a Foundry Process Using Green Sand.
Case 30. Development of Functional Material by Plasma Spraying.
Material Strength.
Case 31. Optimization of Two-Piece Gear Brazing Conditions.
Case 32. Optimization of Resistance Welding Conditions for Electronic
Components.
Case 33. Tile Manufacturing Using Industrial Waste.
Measurement
Case 34. Development of an Electrophotographic Toner Charging Function
Measuring System.
Case 35. Clear Vision by Robust Design.
Case 36. Optimization of Adhesion Condition of Resin Board and Copper
Plate.
Case 37. Optimization of a Wave Soldering Process.
Case 38. Optimization of Casting Conditions for Camshafts by Simulation.
Case 39. Optimization of Photoresist Profile Using Simulation.
Case 40. Optimization of a Deep Drawing Process.
Case 41. Robust Technology Development of an Encapsulation Process.
Case 42. Gas-Arc Stud Weld Process Parameter Optimization Utilizing Robust
Design..
Case 43. Optimization of Molding Conditions of Thick-Walled Products.
Case 44. Quality Improvement of Electro-Deposited Process for Magnet
Production.
Case 45. Optimization of an Electrical Encapsulation Process Through
Parameter Design.
Case 46. Development of Plastic Injection Molding Technology by
Transformability.
Product Development.
Case 47. Stability Design of Shutter Mechanisms of Single-Use Cameras by
Simulation.
Case 48. Optimization of a Clutch Disc Torsional Damping System Design.
Case 49. Direct Injection Diesel Injector Optimization.
Case 50. Optimization of Disc Blade Mobile Cutters.
Case 51. D-VHS Tape Travel Stability.
Case 52. Functionality Evaluation of Spindles.
Case 53. Improving Minivan Rear Window Latching.
Case 54. Linear Proportional Purge Solenoids.
Case 55. Optimization of a Linear Actuator Using Simulation.
Case 56. Functionality of Evaluation of Articulated Robots.
Case 57. New Ultra-Miniature EMS Tact Switch Optimization.
Case 58. Optimization of an Electrical Connector Insulator Contact Housing.
Case 59. Air Flow Noise Reduction of Intercoolers.
Case 60. Reduction of Boosting Force Variation of Brake Boosters.
Case 61. Reduction of Chattering Noise in 47-Feeder Valves.
Case 62. Optimal Design for a Small DC Motor.
Case 63. Steering System On-Center Robustness.
Case 64. Improvement of the Taste of Omelets.
Case 65. Wiper System Chatter Reduction.
Other.
Case 66. Fabrication Line Capacity Planning Using a Robust Design Dynamic
Model.
PART IV: MAHALANOBIS-TAGUCHI SYSTEM (MTS).
Human Performance.
Case 67. Prediction of Programming Ability from a Questionnaire Using MTS.
Case 68. Technique for the Evaluation of Programming Ability Based on MTS.
Inspection.
Case 69. Application of Mahalanobis Distance for the Automatic Inspection
of Solder Joints.
Case 70. Application of MTS to Thermal Ink Jet Image Quality Inspection.
Case 71. Detector Switch Characterization Using MTS.
Case 72. Exhaust Sensor Output Characterization Using MTS.
Case 73. Defects Detection Using MTS.
Medical Diagnosis.
Case 74. Application of Mahalanobis Distance to the Measurement of Drug
Efficacy.
Case 75. Use of Mahalanobis Distance in Medical Diagnosis.
Case 76. Prediction of Urinary Continence Recovery Among Patients with
Brain Disease Using Mahalanobis Distance.
Case 77. Mahalanobis Distance Application for Health Examination and
Treatment of Missing Data.
Case 78. Forecasting Future Health from Existing Medical Examination
Results Using MTS..
Product.
Case 79. Character Recognition Using Mahalanobis Distance.
Case 80. Printed Letter Inspection Technique Using MTS.
PART V: SOFTWARE TESTING AND APPLICATION.
Algorithms.
Case 81. Optimization of a Diesel Engine Software Control Strategy.
Case 82. Optimizing Video Compression.
Computer Systems.
Case 83. Robust Optimization of a Real-Time Operating System Using
Parameter Design.
Software.
Case 84. Evaluation of Capability and Error in Programming.
Case 85. Evaluation of Programmer's Ability in Software Production.
Case 86. Robust Testing of Electronic Warfare Systems.
Case 87. Streamlining of Debugging Software Using an Orthogonal Array.
PART VI: ON-LINE QUALITY ENGINEERING.
On-Line
Case 88. Application of On-Line Quality Engineering to the Automobile
Manufacturing Process.
Case 89. Design of Preventive Maintenance of a Bucket Elevator Through
Simultaneous Use of Periodic Maintenance and Checkup.
Case 90. Feedback Control by Quality Characteristics.
Case 91. Control of Mechanical Component Parts in a Manufacturing Process.
Case 92. Semiconductor Rectifier Manufacturing by On-Line Quality
Engineering.
PART VII: MISCELLANEOUS.
Miscellaneous.
Case 93. Estimation of Working Hours in Software Development.
Case 94. Application of Linear and Nonlinear Regression Equations for
Engineering.
SECTION 3. TAGUCHI'S METHODS VERSUS OTHER QUALITY PHILOSOPHIES.
Chapter 39. Quality Management in Japan
Chapter 40. Deming and Taguchi's Quality Engineering.
Chapter 41. Enhancing Robust Design with the Aid of TRIZ and Axiomatic
Design.
Chapter 42. Testing and Quality Engineering.
Chapter 43. Total Product Development and Taguchi's Quality Engineering.
Chapter 44. Role of Taguchi Methods in Design for Six Sigma.
Appendix A: Orthogonal Array and Linear Graphs. Tools for Quality
Engineering.
Appendix B: Equations for On-Line Process Control.
Appendix C: Orthogonal Array and Linear Graphs for Chapter 38.
Glossary.
Bibliopgraphy.
Index.
"...One can find praise for Taguchi's Quality Engineering Handbook right at the beginning of the book, where several well-known authorities express their opinions--in fact, admiration. This reviewer totally concurs. It remains to praise and congratulate the authors and the publisher for their part in bringing out this great volume of more than 1,600 pages." (Choice, September 2006 )