19,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
payback
10 °P sammeln
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! In number theory and algebraic geometry, the Tate twist, named after John Tate, is an operation on Galois modules. For example, if K is a field, GK is its absolute Galois group, and : GK AutK(V) is a representation of GK on a finite-dimensional vector space V over the field Qp of p-adic numbers, then the Tate twist of V, denoted V(1), is the representation on the tensor product V Qp(1), where Qp(1) is the p-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure Ks of K). More generally, if m is a…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
High Quality Content by WIKIPEDIA articles! In number theory and algebraic geometry, the Tate twist, named after John Tate, is an operation on Galois modules. For example, if K is a field, GK is its absolute Galois group, and : GK AutK(V) is a representation of GK on a finite-dimensional vector space V over the field Qp of p-adic numbers, then the Tate twist of V, denoted V(1), is the representation on the tensor product V Qp(1), where Qp(1) is the p-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure Ks of K). More generally, if m is a positive integer, the mth Tate twist of V, denoted V(m), is the tensor product of V with the m-fold tensor product of Qp(1). Denoting by Qp( 1) the dual representation of Qp(1), the mth Tate twist of V can be defined as