19,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
  • Broschiertes Buch

In fluid dynamics, the Taylor number is a dimensionless quantity that characterizes the importance of centrifugal "forces" or so-called inertial forces due to rotation of a fluid about a vertical axis, relative to viscous forces. The typical context of the Taylor number is in characterization of the Couette flow between rotating colinear cylinders or rotating concentric spheres. In the case of a system which is not rotating uniformly, such as the case of cylindrical Couette flow in the case where the outer cylinder is stationary and the inner cylinder is rotating, inertial forces will often…mehr

Produktbeschreibung
In fluid dynamics, the Taylor number is a dimensionless quantity that characterizes the importance of centrifugal "forces" or so-called inertial forces due to rotation of a fluid about a vertical axis, relative to viscous forces. The typical context of the Taylor number is in characterization of the Couette flow between rotating colinear cylinders or rotating concentric spheres. In the case of a system which is not rotating uniformly, such as the case of cylindrical Couette flow in the case where the outer cylinder is stationary and the inner cylinder is rotating, inertial forces will often tend to destabilize a system, whereas viscous forces tend to stabilize a system and damp out perturbations and turbulence.