158,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Gebundenes Buch

Resource depletion and ecological risks are more than ever at the heart of societal and economic debates. In the 1970s, the developed countries saw the Fordist growth regime crumble in parallel with the growing awareness of the ecological issue. Since the first industrial revolutions, technological dynamics have been the cause of many environmental problems, and there is a consensus on the diagnosis. Integrated technologies reduce resource use and/or pollution at source by using cleaner production methods. This generally leads to a reduction in the by-products, energy inputs and resources used…mehr

Produktbeschreibung
Resource depletion and ecological risks are more than ever at the heart of societal and economic debates. In the 1970s, the developed countries saw the Fordist growth regime crumble in parallel with the growing awareness of the ecological issue. Since the first industrial revolutions, technological dynamics have been the cause of many environmental problems, and there is a consensus on the diagnosis. Integrated technologies reduce resource use and/or pollution at source by using cleaner production methods. This generally leads to a reduction in the by-products, energy inputs and resources used by companies to produce goods.

Integrated production technologies reduce negative environmental impacts at source by substituting or modifying cleaner technologies. Examples of integrated, or cleaner, production technologies are the recirculation of materials, the use of environmentally friendly materials (such as the substitution of water for organic solvents), etc. However, theimplementation of integrated production technologies is often hampered by obstacles related to cost, coordination and skill inertia problems and to the productive organisation of companies. In addition to the high investment costs of new integrated technologies, additional barriers may emerge depending on the nature of the environmental problem and the type of environmental regulation in question.
Autorenporträt
Jamal MABROUKI received his PhD in Process and Environmental Engineering at Mohammed V University in Rabat, specializing in artificial intelligence and smart automatic systems. He completed the Bachelor of Science in Physics and Chemistry with honors from Hassan II University in Casablanca, Morocco and the engineer in Environment and smart system from Ibn Zohr University. His research is on intelligent monitoring, control, and management systems and more particularly on sensing and supervising remote intoxication systems, smart self-supervised systems and recurrent neural networks. He has published several papers in conferences and indexed journals, most of them related to artificial intelligent systems, internet of things or big data and mining. Jamal will currently work in environment, energy and smart system professor at Mohammed V University in Rabat, Faculty of Science. Jamal is scientific committee member of numerous national and international conferences. He is also a reviewer of Modeling Earth Systems and Environment; International Journal of Environmental Analytical Chemistry; International Journal of Modeling, Simulation, and Scientific Computing; The Journal of Supercomputing and Big Data Mining and Analytics.