Der Stoffumfang dieser modernen Darstellung orientiert sich an den Erfordernissen der Vorlesungen, die an Technischen Hochschulen und Universitäten für Studenten technischer Fachrichtungen angeboten werden; auch Hörer benachbarter Fächer wie der Physik, der angewandten Mathematik und Informatik werden angesprochen. Das Buch erläutert die grundlegenden Begriffe an einfachen Systemen und führt hin bis zu den Themen mit aktueller Bedeutung wie Modalanalyse, Fouriertransformation und Zufallsschwingungen. Jedes Kapitel wird durch Übungsaufgaben mit Lösungshinweisen abgeschlossen. Das Werk eignet…mehr
Der Stoffumfang dieser modernen Darstellung orientiert sich an den Erfordernissen der Vorlesungen, die an Technischen Hochschulen und Universitäten für Studenten technischer Fachrichtungen angeboten werden; auch Hörer benachbarter Fächer wie der Physik, der angewandten Mathematik und Informatik werden angesprochen. Das Buch erläutert die grundlegenden Begriffe an einfachen Systemen und führt hin bis zu den Themen mit aktueller Bedeutung wie Modalanalyse, Fouriertransformation und Zufallsschwingungen. Jedes Kapitel wird durch Übungsaufgaben mit Lösungshinweisen abgeschlossen. Das Werk eignet sich aufgrund seines systematischen Aufbaus und seiner klaren Darstellung nicht nur zum Gebrauch neben Vorlesungen, sondern auch zum Selbststudium für den Ingenieur in der Praxis.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1 Grundbegriffe.- 1.1 Einführung.- 1.2 Periodische Schwingungen.- 1.3 Harmonische Schwingungen.- 1.4 Darstellung periodischer Funktionen durch FOURIERreihen.- 1.5 Aufgaben zu Kapitel 1.- Literatur zu Kapitel 1.- 2 Systeme mit einem Freiheitsgrad.- 2.1 Die Methode der kleinen Schwingungen.- 2.2 Phasenkurven.- 2.3 Freie ungedämpfte Schwingungen.- 2.4 Freie gedämpfte Schwingungen.- 2.5 Erzwungene Schwingungen bei harmonischer Erregung.- 2.6 Erzwungene Schwingungen bei periodischer Erregung.- 2.7 Erzwungene Schwingungen bei beliebiger Erregung.- 2.8 Aufgaben zu Kapitel 2.- Literatur zu Kapitel 2.- 3 Systeme mit zwei Freiheitsgraden.- 3.1 Freie ungedämpfte Schwingungen.- 3.2 Erzwungene ungedämpfte Schwingungen bei harmonischer Erregung.- 3.3 Freie gedämpfte Schwingungen.- 3.4 Erzwungene gedämpfte Schwingungen.- 3.5 Entartete Fälle.- 3.6 Gyroskopische Terme.- 3.7 Beispiele und Anwendungen.- 3.8 Aufgaben zu Kapitel 3.- Literatur zu Kapitel 3.- 4 Systeme mit endlich vielen Freiheitsgraden.- 4.1 Freie ungedämpfte Schwingungen.- 4.2 Freie gedämpfte Schwingungen.- 4.3 Erzwungene Schwingungen.- 4.4 Systeme mit gyroskopischen Termen.- 4.5 Systeme mit "zirkulatorischen" Kräften.- 4.6 Experimentelle Modalanalyse.- 4.7 Aufgaben zu Kapitel 4.- Literatur zu Kapitel 4.- 5 Die FOURIERtransformation und ihre Anwendungen in der Schwingungslehre.- 5.1 Das FOURIERintegral als Verallgemeinerung der FOURIERreihen.- 5.2 Die wichtigsten Eigenschaften der FOURIERtransformation..- 5.3 Behandlung erzwungener Schwingungen im Frequenzbereich.- 5.4 Kreuzkorrelationsfunktion und Autokorrelationsfunktion..- 5.5 Anwendung auf Zufallsschwingungen.- 5.6 Aufgaben zu Kapitel 5.- Literatur zu Kapitel 5.- Anhang: Korrespondenzen der FOURIERtransformation.- Namens- und Sachverzeichnis.
1 Grundbegriffe.- 1.1 Einführung.- 1.2 Periodische Schwingungen.- 1.3 Harmonische Schwingungen.- 1.4 Darstellung periodischer Funktionen durch FOURIERreihen.- 1.5 Aufgaben zu Kapitel 1.- Literatur zu Kapitel 1.- 2 Systeme mit einem Freiheitsgrad.- 2.1 Die Methode der kleinen Schwingungen.- 2.2 Phasenkurven.- 2.3 Freie ungedämpfte Schwingungen.- 2.4 Freie gedämpfte Schwingungen.- 2.5 Erzwungene Schwingungen bei harmonischer Erregung.- 2.6 Erzwungene Schwingungen bei periodischer Erregung.- 2.7 Erzwungene Schwingungen bei beliebiger Erregung.- 2.8 Aufgaben zu Kapitel 2.- Literatur zu Kapitel 2.- 3 Systeme mit zwei Freiheitsgraden.- 3.1 Freie ungedämpfte Schwingungen.- 3.2 Erzwungene ungedämpfte Schwingungen bei harmonischer Erregung.- 3.3 Freie gedämpfte Schwingungen.- 3.4 Erzwungene gedämpfte Schwingungen.- 3.5 Entartete Fälle.- 3.6 Gyroskopische Terme.- 3.7 Beispiele und Anwendungen.- 3.8 Aufgaben zu Kapitel 3.- Literatur zu Kapitel 3.- 4 Systeme mit endlich vielen Freiheitsgraden.- 4.1 Freie ungedämpfte Schwingungen.- 4.2 Freie gedämpfte Schwingungen.- 4.3 Erzwungene Schwingungen.- 4.4 Systeme mit gyroskopischen Termen.- 4.5 Systeme mit "zirkulatorischen" Kräften.- 4.6 Experimentelle Modalanalyse.- 4.7 Aufgaben zu Kapitel 4.- Literatur zu Kapitel 4.- 5 Die FOURIERtransformation und ihre Anwendungen in der Schwingungslehre.- 5.1 Das FOURIERintegral als Verallgemeinerung der FOURIERreihen.- 5.2 Die wichtigsten Eigenschaften der FOURIERtransformation..- 5.3 Behandlung erzwungener Schwingungen im Frequenzbereich.- 5.4 Kreuzkorrelationsfunktion und Autokorrelationsfunktion..- 5.5 Anwendung auf Zufallsschwingungen.- 5.6 Aufgaben zu Kapitel 5.- Literatur zu Kapitel 5.- Anhang: Korrespondenzen der FOURIERtransformation.- Namens- und Sachverzeichnis.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826