In this book we share our work with those who are faced with the challenging problem of studying the earth's atmosphere and the interactions between the atmosphere and the earth's surface. While there are some excellent books on this topic written from the physical point of view, those discussing the modeling and computational aspects are few and far between. Our book is intended to bridge this gap so that students as well as investigators will be able to understand and apply practical ways of determining solutions. Radiative transfer theory, on which this book is based, is elegant, and great…mehr
In this book we share our work with those who are faced with the challenging problem of studying the earth's atmosphere and the interactions between the atmosphere and the earth's surface. While there are some excellent books on this topic written from the physical point of view, those discussing the modeling and computational aspects are few and far between. Our book is intended to bridge this gap so that students as well as investigators will be able to understand and apply practical ways of determining solutions. Radiative transfer theory, on which this book is based, is elegant, and great minds have contributed to its richness. Instead of duplicating the clas sical references, we have taken a different approach: We have developed the in variant imbedding approach, both analytically and computationally, because of its attractiveness for producing numerical solutions. Having witnessed the transition to the computer age, we know that a new attitude to mathemati cal formulation is required. The one that we endorse is a model stated in the form of a Cauchy problem: a system of ordinary differential equations with a complete set of initial conditions. We chose this approach because it is well suited to implementation on digital computers.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Basic Concepts.- 1.1 Introduction.- 1.2 Invariant imbedding and a simple model of reflection.- 1.3 Computation of reflection function.- 1.4 Internal intensity and source functions.- 1.5 Physical/mathematical descriptions.- 1.6 Intensity of radiation and source function.- 1.7 Discussion.- 2. Inhomogeneous Plane-Parallel Atmospheres.- 2.1 Introduction.- 2.2 Diffuse Reflection and Transmission.- 2.3 Computational method and results.- 2.4 Internal Intensity and Source Functions.- 2.5 Internal Emitting Sources.- 2.6 Reflecting Surfaces.- 2.7 Omnidirectional Illumination.- 2.8 Discussion.- 3. Inverse Problems.- 3.1 Introduction.- 3.2 Associative memories.- 3.3 Quasilinearization.- 3.4 FEED automatic derivative evaluation.- 3.5 Inverse problems for inhomogeneous media and effect of criterion on estimates.- 3.6 Other inversion techniques.- 3.7 Discussion.- 4. Anisotropic Scattering.- 4.1 Introduction.- 4.2 Phase function dependent on polar angles.- 4.3 Phase function expandable in Legendre polynomials.- 4.4 Estimation of Phase Function.- 4.5 Flux Equivalences.- 4.6 Three-Dimensional Reflection and Transmission.- 4.7 Concluding Remarks.- 5. Finite Orders of Scattering.- 5.1 Introduction.- 5.2 Scattering and Transmission Functions of Finite Order.- 5.3 The Auxiliary Equation and its Solution.- 5.4 Cumulative Functions.- 5.5 Discussion.- 6. Scattering Matrix.- 6.1 Introduction.- 6.2 The Scattering Matrix.- 6.3 The Homogeneous Medium.- 6.4 The Transport Equation.- 6.5 The Star-Semi-Group.- 6.6 The n Terms Solutions.- 6.7 The Discrete Case.- 6.8 The Time-Dependent Case.- 6.9 Concluding Remarks.- 7. Atmospheric Correction.- 7.1 Introduction.- 7.2 Radiative Processes in the Atmosphere.- 7.3 Atmospheric Correction for Landsat Data.- 7.4 Atmospheric Correction for Aircraft Data.- 7.5Outline of the AECS Software.- 7.6 General Models and Approximations.- 7.7 Results and Discussion.- References.- 8. Topographic Effects in Terrestrial Remote Sensing.- 8.1 Introduction.- 8.2 Flat Terrain.- 8.3 Rugged Terrain.- 8.4 Model Rendering.- 8.5 Topographic and atmospheric correction of satellite data.- 8.6 Discussion.- 9. Searchlight Problem.- 9.1 Introduction.- 9.2 Basic Equations.- 9.3 Equation of Transfer.- 9.4 Asymptotic Solutions.- 9.5 Approximations.- 9.6 Numerical Simulation.- 9.7 Conclusions.- 10. Transfer of Radiation with Spherical Symmetry.- 10.1 Introduction.- 10.2 Intensity and Operations.- 10.3 Transfer of Radiation.- 10.4 Coefficients of the Medium.- 10.5 State and Local Form.- 10.6 The Reflecting Core.- 10.7 Special Cases and Applications.- 10.8 Numerical Solution of Functional Equations for Spherical Geometry.- 10.9 Numerical Estimation of Derivatives.- 10. 10 Perturbation Approximation.- 10.11 Numerical Results.- 10.12 Discussion.- 11. Bibliography.- A. Appendix A.- The Physical Problem of Radiative Transfer.- A.1 The Intensity of Radiation.- A.2 The Absorption and the Scattering Coefficients.- A.3 The Phase Function.- A.4 The Emission Coefficient, The Mean Intensity and the Source Function.- A.5 The Net Flux and the Density of Radiation.- A.6 The Equation of Transfer.- A.7 Discussion.- References.- B. Appendix B.- Derivation and Validation of Imbedding Equations.- B.1 Introduction.- B.2 Source Function.- B.2.1 Integral equation.- B.2.2 Derivation of the integral equation.- B.2.4 Analytical derivation of the imbedding equations.- B.3 Reflected Intensities.- B.3.2 Imbedding equations.- B.4 Internal Intensities.- B.4.1 Introduction.- B.4.2 Imbedding equations.- B.4.3 Discussion.- B.5 The Fredholm Resolvent.- B.5.1 Resolvent for Fredholm integralequations.- B.5.2 Resolvent for radiative transfer in a homogeneous slab.- B.5.3 Invariant imbedding for the resolvent.- B.6 Discussion.- References.- C. Appendix C.- Greenhouse Effect.- C.1 Introduction.- C.2 Integral Equation for Source Function.- C.3 Invariant Imbedding.- C.4 Computational Method.- C.5 Computational Results.- References.- D. Appendix D.- Identification of an Atmospheric Medium.- D.1 Introduction.- D.3 Scattering Matrix from Inputs and Outputs.- D.4 Relationship between Scattering Matrices.- D.5 Conclusion.- References.
1. Basic Concepts.- 1.1 Introduction.- 1.2 Invariant imbedding and a simple model of reflection.- 1.3 Computation of reflection function.- 1.4 Internal intensity and source functions.- 1.5 Physical/mathematical descriptions.- 1.6 Intensity of radiation and source function.- 1.7 Discussion.- 2. Inhomogeneous Plane-Parallel Atmospheres.- 2.1 Introduction.- 2.2 Diffuse Reflection and Transmission.- 2.3 Computational method and results.- 2.4 Internal Intensity and Source Functions.- 2.5 Internal Emitting Sources.- 2.6 Reflecting Surfaces.- 2.7 Omnidirectional Illumination.- 2.8 Discussion.- 3. Inverse Problems.- 3.1 Introduction.- 3.2 Associative memories.- 3.3 Quasilinearization.- 3.4 FEED automatic derivative evaluation.- 3.5 Inverse problems for inhomogeneous media and effect of criterion on estimates.- 3.6 Other inversion techniques.- 3.7 Discussion.- 4. Anisotropic Scattering.- 4.1 Introduction.- 4.2 Phase function dependent on polar angles.- 4.3 Phase function expandable in Legendre polynomials.- 4.4 Estimation of Phase Function.- 4.5 Flux Equivalences.- 4.6 Three-Dimensional Reflection and Transmission.- 4.7 Concluding Remarks.- 5. Finite Orders of Scattering.- 5.1 Introduction.- 5.2 Scattering and Transmission Functions of Finite Order.- 5.3 The Auxiliary Equation and its Solution.- 5.4 Cumulative Functions.- 5.5 Discussion.- 6. Scattering Matrix.- 6.1 Introduction.- 6.2 The Scattering Matrix.- 6.3 The Homogeneous Medium.- 6.4 The Transport Equation.- 6.5 The Star-Semi-Group.- 6.6 The n Terms Solutions.- 6.7 The Discrete Case.- 6.8 The Time-Dependent Case.- 6.9 Concluding Remarks.- 7. Atmospheric Correction.- 7.1 Introduction.- 7.2 Radiative Processes in the Atmosphere.- 7.3 Atmospheric Correction for Landsat Data.- 7.4 Atmospheric Correction for Aircraft Data.- 7.5Outline of the AECS Software.- 7.6 General Models and Approximations.- 7.7 Results and Discussion.- References.- 8. Topographic Effects in Terrestrial Remote Sensing.- 8.1 Introduction.- 8.2 Flat Terrain.- 8.3 Rugged Terrain.- 8.4 Model Rendering.- 8.5 Topographic and atmospheric correction of satellite data.- 8.6 Discussion.- 9. Searchlight Problem.- 9.1 Introduction.- 9.2 Basic Equations.- 9.3 Equation of Transfer.- 9.4 Asymptotic Solutions.- 9.5 Approximations.- 9.6 Numerical Simulation.- 9.7 Conclusions.- 10. Transfer of Radiation with Spherical Symmetry.- 10.1 Introduction.- 10.2 Intensity and Operations.- 10.3 Transfer of Radiation.- 10.4 Coefficients of the Medium.- 10.5 State and Local Form.- 10.6 The Reflecting Core.- 10.7 Special Cases and Applications.- 10.8 Numerical Solution of Functional Equations for Spherical Geometry.- 10.9 Numerical Estimation of Derivatives.- 10. 10 Perturbation Approximation.- 10.11 Numerical Results.- 10.12 Discussion.- 11. Bibliography.- A. Appendix A.- The Physical Problem of Radiative Transfer.- A.1 The Intensity of Radiation.- A.2 The Absorption and the Scattering Coefficients.- A.3 The Phase Function.- A.4 The Emission Coefficient, The Mean Intensity and the Source Function.- A.5 The Net Flux and the Density of Radiation.- A.6 The Equation of Transfer.- A.7 Discussion.- References.- B. Appendix B.- Derivation and Validation of Imbedding Equations.- B.1 Introduction.- B.2 Source Function.- B.2.1 Integral equation.- B.2.2 Derivation of the integral equation.- B.2.4 Analytical derivation of the imbedding equations.- B.3 Reflected Intensities.- B.3.2 Imbedding equations.- B.4 Internal Intensities.- B.4.1 Introduction.- B.4.2 Imbedding equations.- B.4.3 Discussion.- B.5 The Fredholm Resolvent.- B.5.1 Resolvent for Fredholm integralequations.- B.5.2 Resolvent for radiative transfer in a homogeneous slab.- B.5.3 Invariant imbedding for the resolvent.- B.6 Discussion.- References.- C. Appendix C.- Greenhouse Effect.- C.1 Introduction.- C.2 Integral Equation for Source Function.- C.3 Invariant Imbedding.- C.4 Computational Method.- C.5 Computational Results.- References.- D. Appendix D.- Identification of an Atmospheric Medium.- D.1 Introduction.- D.3 Scattering Matrix from Inputs and Outputs.- D.4 Relationship between Scattering Matrices.- D.5 Conclusion.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497