Frank E. Beichelt (Rev.) / Smiley Cheng (Rev.) / Gerd Christoph (Rev.) / Cheryl L. Jennings (Rev.) / Brian C. Macpherson (Rev.) / Douglas C. Montgomery (Rev.) / Raymond H. Myers (Rev.) / Richard Pincus (Rev.) / Tim Robinson (Rev.)Wahrscheinlichkeitstheorie, Stochastische Prozesse, Mathematische Statistik
Teubner-Taschenbuch der Stochastik
Wahrscheinlichkeitstheorie, Stochastische Prozesse, Mathematische Statistik
Hrsg. v. Frank E. Beichelt u. Douglas C. Montgomery
Frank E. Beichelt (Rev.) / Smiley Cheng (Rev.) / Gerd Christoph (Rev.) / Cheryl L. Jennings (Rev.) / Brian C. Macpherson (Rev.) / Douglas C. Montgomery (Rev.) / Raymond H. Myers (Rev.) / Richard Pincus (Rev.) / Tim Robinson (Rev.)Wahrscheinlichkeitstheorie, Stochastische Prozesse, Mathematische Statistik
Teubner-Taschenbuch der Stochastik
Wahrscheinlichkeitstheorie, Stochastische Prozesse, Mathematische Statistik
Hrsg. v. Frank E. Beichelt u. Douglas C. Montgomery
- Buch mit Kunststoff-Einband
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Als anwendungsorientiertes Lehrbuch und Nachschlagewerk vermittelt dieses Teubner-Taschenbuch dem Leser zentrale Teile der Wahrscheinlichkeitstheorie, der Theorie stochastischer Prozesse sowie der mathematischen Statistik - auf elementare, exakte Art und Weise. Die meistbenutzten Methoden und Modelle werden so beschrieben und anhand praxisnaher numerischer Beispiele veranschaulicht, dass ihre Nutzung sofort möglich wird. Studierenden anwendungsbezogener Fachrichtungen steht damit ein Buch zur Verfügung, das den Erfordernissen des Grundstudiums voll Rechnung trägt.
Andere Kunden interessierten sich auch für
- Teubner-Taschenbuch der Stochastik39,99 €
- Michael MürmannWahrscheinlichkeitstheorie und Stochastische Prozesse34,99 €
- Frank BeicheltStochastische Prozesse für Ingenieure44,99 €
- Gerd ChristophStarthilfe Stochastik22,99 €
- Andreas BüchterElementare Stochastik39,99 €
- Götz KerstingElementare Stochastik16,99 €
- Detlef PlachkyMathematische Grundbegriffe und Grundsätze der Stochastik24,95 €
-
Als anwendungsorientiertes Lehrbuch und Nachschlagewerk vermittelt dieses Teubner-Taschenbuch dem Leser zentrale Teile der Wahrscheinlichkeitstheorie, der Theorie stochastischer Prozesse sowie der mathematischen Statistik - auf elementare, exakte Art und Weise. Die meistbenutzten Methoden und Modelle werden so beschrieben und anhand praxisnaher numerischer Beispiele veranschaulicht, dass ihre Nutzung sofort möglich wird. Studierenden anwendungsbezogener Fachrichtungen steht damit ein Buch zur Verfügung, das den Erfordernissen des Grundstudiums voll Rechnung trägt.
Produktdetails
- Produktdetails
- Verlag: Vieweg+Teubner
- Seitenzahl: 450
- Deutsch
- Gewicht: 596g
- ISBN-13: 9783519004578
- ISBN-10: 3519004577
- Artikelnr.: 12106185
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Vieweg+Teubner
- Seitenzahl: 450
- Deutsch
- Gewicht: 596g
- ISBN-13: 9783519004578
- ISBN-10: 3519004577
- Artikelnr.: 12106185
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. Dr. Frank Beichelt, University of the Witwatersrand, Johannesburg, RSA
Prof. Douglas C. Montgomery, Arizona State University, Tempe, USA
Prof. Douglas C. Montgomery, Arizona State University, Tempe, USA
0 Einführung.- 1 Wahrscheinlichkeitstheorie.- 1.1 Zufällige Ereignisse.- 1.2 Wahrscheinlichkeit zufälliger Ereignisse.- 1.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit.- 1.4 Diskrete Zufallsgrößen.- 1.4.1 Grundlagen.- 1.4.2 Parametrische Kenngrößen.- 1.4.3 Diskrete Wahrscheinlichkeitsverteilungen.- 1.4.4 Momenterzeugende Funktionen.- 1.5 Stetige Zufallsgrößen.- 1.5.1 Grundlagen.- 1.5.2 Parametrische Kenngrößen.- 1.5.3 Nichtnegative Zufallsgrößen.- 1.5.4 Stetige Wahrscheinlichkeitsverteilungen.- 1.5.4.1 Normalverteilung (Gaußsche Verteilung).- 1.5.4.2 Logarithmische Normalverteilung.- 1.5.4.3 Inverse Gaußverteilung.- 1.5.4.4 Weibuliverteilung.- 1.5.4.5 Erlangverteilung.- 1.5.4.6 Gammaverteilung.- 1.5.4.7 Betaverteilung.- 1.5.5 Momenterzeugende Funktionen.- 1.6 Funktionen einer Zufallsgröße.- 1.7 Simulation von Zufallsgrößen.- 1.8 Mehrdimensionale Zufallsgrößen.- 1.8.1 Zweidimensionale Zufallsgrößen.- 1.8.1.1 Gemeinsame Wahrscheinlichkeitsverteilung.- 1.8.1.2 Unabhängige Zufallsgrößen.- 1.8.1.3 Bedingte Verteilung.- 1.8.1.4 Funktionen zweier Zufallsgrößen.- 1.8.1.5 Abhängigkeitsmaße für zwei Zufallsgrößen.- 1.8.1.6 Zweidimensionale Normalverteilung.- 1.8.1.7 Diskrete zweidimensionale Zufallsgrößen.- 1.8.2 n-dimensionale Zufallsgrößen.- 1.8.2.1 Grundlagen.- 1.8.2.2 Summen von Zufallsgrößen.- 1.8.2.3 n-dimensionale Normalverteilung.- 1.9 Ungleichungen in der Wahrscheinlichkeitstheorie.- 1.9.1 Abschätzungen für Wahrscheinlichkeiten.- 1.9.1.1 Ungleichungen vom Markov-Tschebyschev-Typ.- 1.9.1.2 Exponentialabschätzungen.- 1.9.1.3 Ungleichungen fur Maxima von Summen.- 1.9.2 Ungleichungen und Abschätzungen für Momente.- 1.10 Grenzwertsätze in der Wahrscheinlichkeitstheorie.- 1.10.1 Konvergenzarten.- 1.10.2 Gesetze der großen Zahlen.- 1.10.2.1 Schwache Gesetze der großen Zahlen.- 1.10.2.2 Starke Gesetze der großen Zahlen.- 1.10.3 Zentraler Grenzwertsatz.- 1.10.4 Lokale Grenzwertsätze.- 1.11 Charakteristische Funktionen.- 1.11.1 Komplexe Zufallsgrößen.- 1.11.2 Eigenschaften charakteristischer Funktionen.- 1.11.3 Charakteristische Funktion diskreter Zufallsgrößen.- 2 Stochastische Prozesse.- 2.1 Einführung.- 2.2 Kenngrößen stochastischer Prozesse.- 2.3 Eigenschaften stochastischer Prozesse.- 2.4 Spezielle stochastische Prozesse.- 2.4.1 Stochastische Prozesse mit stetiger Zeit.- 2.4.2 Stochastische Prozesse mit diskreter Zeit.- 2.5 Poissonsche Prozesse.- 2.5.1 Homogener Poissonprozess.- 2.5.1.1 Definition und Eigenschaften.- 2.5.1.2 Homogener Poissonprozess und Gleichverteilung.- 2.5.2 Inhomogener Poissonprozess.- 2.6 Erneuerungsprozesse.- 2.6.1 Grundlagen.- 2.6.2 Erneuerungsfunktion.- 2.6.2.1 Erneuerungsgleichungen.- 2.6.2.2 Abschätzungen der Erneuerungsfunktion.- 2.6.3 Rekurrenzzeiten.- 2.6.4 Asymptotisches Verhalten.- 2.6.5 Stationäre Erneuerungsprozesse.- 2.6.6 Alternierende Erneuerungsprozesse.- 2.6.7 Kumulative stochastische Prozesse.- 2.6.8 Regenerative stochastische Prozesse.- 2.7 Markovsche Ketten mit diskreter Zeit.- 2.7.1 Grundlagen und Beispiele.- 2.7.2 Klassifikation der Zustände.- 2.7.2.1 Abgeschlossene Zustandsmengen.- 2.7.2.2 Äquivalenzklassen.- 2.7.2.3 Periodizität.- 2.7.2.4 Rekurrenz und Transienz.- 2.7.3 Grenzwertsätze und stationäre Verteilung.- 2.7.4 Geburts- und Todesprozesse.- 2.8 Markovsche Ketten mit stetiger Zeit.- 2.8.1 Grundlagen.- 2.8.2 Kolmogorovsche Gleichungen.- 2.8.3 Stationäre Zustandswahrscheinlichkeiten.- 2.8.4 Konstruktion Markovscher Systeme.- 2.8.5 Erlangsche Phasenmethode.- 2.8.6 Geburts- und Todesprozesse.- 2.8.6.1 Zeitabhängige Zustandswahrscheinlichkeiten.- 2.8.6.2 Stationäre Zustandswahrscheinlichkeiten.- 2.8.6.3 Verweildauern.- 2.8.7 Semi-Markovsche Prozesse.- 2.9 Martingale.- 2.9.1 Martingale in diskreter Zeit.- 2.9.2 Martingale in stetiger Zeit.- 2.10 Wiener Prozess.- 2.10.1 Definition und Eigenschaften.- 2.10.2 Niveauüberschreitung.- 2.10.3 Transformationen des Wiener Prozesses.- 2.10.3.1 Elementare Transformationen.- 2.10.
0 Einführung.- 1 Wahrscheinlichkeitstheorie.- 1.1 Zufällige Ereignisse.- 1.2 Wahrscheinlichkeit zufälliger Ereignisse.- 1.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit.- 1.4 Diskrete Zufallsgrößen.- 1.4.1 Grundlagen.- 1.4.2 Parametrische Kenngrößen.- 1.4.3 Diskrete Wahrscheinlichkeitsverteilungen.- 1.4.4 Momenterzeugende Funktionen.- 1.5 Stetige Zufallsgrößen.- 1.5.1 Grundlagen.- 1.5.2 Parametrische Kenngrößen.- 1.5.3 Nichtnegative Zufallsgrößen.- 1.5.4 Stetige Wahrscheinlichkeitsverteilungen.- 1.5.4.1 Normalverteilung (Gaußsche Verteilung).- 1.5.4.2 Logarithmische Normalverteilung.- 1.5.4.3 Inverse Gaußverteilung.- 1.5.4.4 Weibuliverteilung.- 1.5.4.5 Erlangverteilung.- 1.5.4.6 Gammaverteilung.- 1.5.4.7 Betaverteilung.- 1.5.5 Momenterzeugende Funktionen.- 1.6 Funktionen einer Zufallsgröße.- 1.7 Simulation von Zufallsgrößen.- 1.8 Mehrdimensionale Zufallsgrößen.- 1.8.1 Zweidimensionale Zufallsgrößen.- 1.8.1.1 Gemeinsame Wahrscheinlichkeitsverteilung.- 1.8.1.2 Unabhängige Zufallsgrößen.- 1.8.1.3 Bedingte Verteilung.- 1.8.1.4 Funktionen zweier Zufallsgrößen.- 1.8.1.5 Abhängigkeitsmaße für zwei Zufallsgrößen.- 1.8.1.6 Zweidimensionale Normalverteilung.- 1.8.1.7 Diskrete zweidimensionale Zufallsgrößen.- 1.8.2 n-dimensionale Zufallsgrößen.- 1.8.2.1 Grundlagen.- 1.8.2.2 Summen von Zufallsgrößen.- 1.8.2.3 n-dimensionale Normalverteilung.- 1.9 Ungleichungen in der Wahrscheinlichkeitstheorie.- 1.9.1 Abschätzungen für Wahrscheinlichkeiten.- 1.9.1.1 Ungleichungen vom Markov-Tschebyschev-Typ.- 1.9.1.2 Exponentialabschätzungen.- 1.9.1.3 Ungleichungen fur Maxima von Summen.- 1.9.2 Ungleichungen und Abschätzungen für Momente.- 1.10 Grenzwertsätze in der Wahrscheinlichkeitstheorie.- 1.10.1 Konvergenzarten.- 1.10.2 Gesetze der großen Zahlen.- 1.10.2.1 Schwache Gesetze der großen Zahlen.- 1.10.2.2 Starke Gesetze der großen Zahlen.- 1.10.3 Zentraler Grenzwertsatz.- 1.10.4 Lokale Grenzwertsätze.- 1.11 Charakteristische Funktionen.- 1.11.1 Komplexe Zufallsgrößen.- 1.11.2 Eigenschaften charakteristischer Funktionen.- 1.11.3 Charakteristische Funktion diskreter Zufallsgrößen.- 2 Stochastische Prozesse.- 2.1 Einführung.- 2.2 Kenngrößen stochastischer Prozesse.- 2.3 Eigenschaften stochastischer Prozesse.- 2.4 Spezielle stochastische Prozesse.- 2.4.1 Stochastische Prozesse mit stetiger Zeit.- 2.4.2 Stochastische Prozesse mit diskreter Zeit.- 2.5 Poissonsche Prozesse.- 2.5.1 Homogener Poissonprozess.- 2.5.1.1 Definition und Eigenschaften.- 2.5.1.2 Homogener Poissonprozess und Gleichverteilung.- 2.5.2 Inhomogener Poissonprozess.- 2.6 Erneuerungsprozesse.- 2.6.1 Grundlagen.- 2.6.2 Erneuerungsfunktion.- 2.6.2.1 Erneuerungsgleichungen.- 2.6.2.2 Abschätzungen der Erneuerungsfunktion.- 2.6.3 Rekurrenzzeiten.- 2.6.4 Asymptotisches Verhalten.- 2.6.5 Stationäre Erneuerungsprozesse.- 2.6.6 Alternierende Erneuerungsprozesse.- 2.6.7 Kumulative stochastische Prozesse.- 2.6.8 Regenerative stochastische Prozesse.- 2.7 Markovsche Ketten mit diskreter Zeit.- 2.7.1 Grundlagen und Beispiele.- 2.7.2 Klassifikation der Zustände.- 2.7.2.1 Abgeschlossene Zustandsmengen.- 2.7.2.2 Äquivalenzklassen.- 2.7.2.3 Periodizität.- 2.7.2.4 Rekurrenz und Transienz.- 2.7.3 Grenzwertsätze und stationäre Verteilung.- 2.7.4 Geburts- und Todesprozesse.- 2.8 Markovsche Ketten mit stetiger Zeit.- 2.8.1 Grundlagen.- 2.8.2 Kolmogorovsche Gleichungen.- 2.8.3 Stationäre Zustandswahrscheinlichkeiten.- 2.8.4 Konstruktion Markovscher Systeme.- 2.8.5 Erlangsche Phasenmethode.- 2.8.6 Geburts- und Todesprozesse.- 2.8.6.1 Zeitabhängige Zustandswahrscheinlichkeiten.- 2.8.6.2 Stationäre Zustandswahrscheinlichkeiten.- 2.8.6.3 Verweildauern.- 2.8.7 Semi-Markovsche Prozesse.- 2.9 Martingale.- 2.9.1 Martingale in diskreter Zeit.- 2.9.2 Martingale in stetiger Zeit.- 2.10 Wiener Prozess.- 2.10.1 Definition und Eigenschaften.- 2.10.2 Niveauüberschreitung.- 2.10.3 Transformationen des Wiener Prozesses.- 2.10.3.1 Elementare Transformationen.- 2.10.