The Art of Doing Algebraic Geometry
Herausgegeben:Dedieu, Thomas; Flamini, Flaminio; Fontanari, Claudio; Galati, Concettina; Pardini, Rita
The Art of Doing Algebraic Geometry
Herausgegeben:Dedieu, Thomas; Flamini, Flaminio; Fontanari, Claudio; Galati, Concettina; Pardini, Rita
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This volume is dedicated to Ciro Ciliberto on the occasion of his 70th birthday and contains refereed papers, offering an overview of important parts of current research in algebraic geometry and related research in the history of mathematics. It presents original research as well as surveys, both providing a valuable overview of the current state of the art of the covered topics and reflecting the versatility of the scientific interests of Ciro Ciliberto.
Andere Kunden interessierten sich auch für
- The Art of Doing Algebraic Geometry95,99 €
- Jean DieudonnéHistory Algebraic Geometry94,99 €
- Birational Geometry and Moduli Spaces139,09 €
- Representation Theory and Algebraic Geometry88,99 €
- Representation Theory and Algebraic Geometry88,99 €
- Claudio BartocciFourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics132,99 €
- Birational Geometry, Rational Curves, and Arithmetic103,99 €
-
-
-
This volume is dedicated to Ciro Ciliberto on the occasion of his 70th birthday and contains refereed papers, offering an overview of important parts of current research in algebraic geometry and related research in the history of mathematics. It presents original research as well as surveys, both providing a valuable overview of the current state of the art of the covered topics and reflecting the versatility of the scientific interests of Ciro Ciliberto.
Produktdetails
- Produktdetails
- Trends in Mathematics
- Verlag: Birkhäuser / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-11937-8
- 2023
- Seitenzahl: 436
- Erscheinungstermin: 15. April 2023
- Englisch
- Abmessung: 241mm x 160mm x 28mm
- Gewicht: 896g
- ISBN-13: 9783031119378
- ISBN-10: 3031119371
- Artikelnr.: 64235649
- Trends in Mathematics
- Verlag: Birkhäuser / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-11937-8
- 2023
- Seitenzahl: 436
- Erscheinungstermin: 15. April 2023
- Englisch
- Abmessung: 241mm x 160mm x 28mm
- Gewicht: 896g
- ISBN-13: 9783031119378
- ISBN-10: 3031119371
- Artikelnr.: 64235649
Thomas Dedieu is Maitre de Conférence at the University of Toulouse. His research area is algebraic geometry, and more specifically K3 surfaces, canonical curves, and their extensions, Severi varieties, and projective geometry. Flaminio Flamini is Full Professor of Geometry at the University of Roma Tor Vergata. His research area is algebraic geometry, especially curves, surfaces and vector bundles, their Hilbert schemes and their moduli. Claudio Fontanari is Associate Professor of Geometry at the University of Trento. His research area is algebraic geometry, especially algebraic curves, moduli spaces and higher dimensional projective varieties. Concettina Galati is Associate Professor of Geometry at the University of Calabria. Her research area is algebraic geometry, and more specifically Severi varieties, deformation theory of curve and surface singularities, moduli spaces of curves and Brill-Noether theory. Rita Pardini is Full Professor of Geometry at the University of Pisa. Her research area is algebraic geometry, especially surfaces and their moduli, irregular varieties and coverings.
M. C. Brambilla, O. Dumitrescu, E. Postinghel, "Weyl cycles on the blow-up of $P^4$ at eight points".- A. Brigaglia, "Simson's reconstruction of Apollonius' Loci Plani. Modern ideas in classical language".- F. Catanese, "Kummer quartic surfaces, strict self-duality, and more".- L. Chiantini e Giorgio Ottaviani, "A footnote to a footnote to a paper of B. Segre".- T. Dedieu and E. Sernesi, "Deformations and extensions of Gorenstein weighted projective spaces".- V. Di Gennaro and Davide Franco, "Intersection cohomology and Severi Varieties".- O. Dumitrescu and R. Miranda, "Cremona Orbits in $mathbb P^4$ and Applications".- F. Flamini and P. Supino, "On some components of Hilbert schemes of curves".- Gerard van der Geer, "Siegel modular forms of degree two and three and invariant theory".- A. Laface and L. Ugaglia, "On intrinsic negative curves".- Angelo F. Lopez, with an appendix by Thomas Dedieu, "On the extendibility of projective varieties: a survey".- M. Mella, "The minimal Cremona degree of quartic surfaces".- M. Mendes Lopes and R. Pardini, "On the degree of the canonical map of a surface of general type".- C. Pedrini, "Hyperkæhler varieties with a motive of abelian type".- F. Polizzi and P. Sabatino, "Finite quotients of surface braid groups and double Kodaira fibrations".- Y. Prokhorov and M. Zaidenberg, "Affine cones over Fano-Mukai fourfolds of genus 10 are flexible".- J. Roé, "Enriques diagrams under pullback by a double cover".- E. Rogora, "The "projective spirit" in Segre's lectures on differential equations".
M. C. Brambilla, O. Dumitrescu, E. Postinghel, "Weyl cycles on the blow-up of $P^4$ at eight points".- A. Brigaglia, "Simson's reconstruction of Apollonius' Loci Plani. Modern ideas in classical language".- F. Catanese, "Kummer quartic surfaces, strict self-duality, and more".- L. Chiantini e Giorgio Ottaviani, "A footnote to a footnote to a paper of B. Segre".- T. Dedieu and E. Sernesi, "Deformations and extensions of Gorenstein weighted projective spaces".- V. Di Gennaro and Davide Franco, "Intersection cohomology and Severi Varieties".- O. Dumitrescu and R. Miranda, "Cremona Orbits in $mathbb P^4$ and Applications".- F. Flamini and P. Supino, "On some components of Hilbert schemes of curves".- Gerard van der Geer, "Siegel modular forms of degree two and three and invariant theory".- A. Laface and L. Ugaglia, "On intrinsic negative curves".- Angelo F. Lopez, with an appendix by Thomas Dedieu, "On the extendibility of projective varieties: a survey".- M. Mella, "The minimal Cremona degree of quartic surfaces".- M. Mendes Lopes and R. Pardini, "On the degree of the canonical map of a surface of general type".- C. Pedrini, "Hyperkæhler varieties with a motive of abelian type".- F. Polizzi and P. Sabatino, "Finite quotients of surface braid groups and double Kodaira fibrations".- Y. Prokhorov and M. Zaidenberg, "Affine cones over Fano-Mukai fourfolds of genus 10 are flexible".- J. Roé, "Enriques diagrams under pullback by a double cover".- E. Rogora, "The "projective spirit" in Segre's lectures on differential equations".