Ein Angebot für € 54,90 €
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Integrale Darstellungen von Funktionen und Differentialformen sind ein wichtiges Werkzeug, um quantitative Resultate für holomorphe Funktionen auf komplexen Mannigfaltigkeiten zu entwickeln. Dieses Buch ist eine Monographie zu einem Spezialgebiet der komplexen Analysis.
Integrale Darstellungen von Funktionen und Differentialformen sind ein wichtiges Werkzeug, um quantitative Resultate für holomorphe Funktionen auf komplexen Mannigfaltigkeiten zu entwickeln. Dieses Buch ist eine Monographie zu einem Spezialgebiet der komplexen Analysis.
Produktdetails
- Produktdetails
- Aspects of Mathematics Vol.34
- Verlag: Vieweg+Teubner
- Seitenzahl: 362
- Englisch
- Abmessung: 245mm
- Gewicht: 736g
- ISBN-13: 9783528069544
- ISBN-10: 3528069546
- Artikelnr.: 08928084
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Aspects of Mathematics Vol.34
- Verlag: Vieweg+Teubner
- Seitenzahl: 362
- Englisch
- Abmessung: 245mm
- Gewicht: 736g
- ISBN-13: 9783528069544
- ISBN-10: 3528069546
- Artikelnr.: 08928084
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. Dr. Ingo Lieb ist Professor für Mathematik an der Universität Bonn. Er ist Autor der beiden Bücher "Funktionentheorie" und "Ausgewählte Kapitel aus der Funktionentheorie" in der Reihe vieweg studium/Aufbaukurs Mathematik.
From the Contents:
-The Bochner-Martinelli formula
- The Koppelman calculus
- Strictly pseudoconvex domains and Levi s problem
- Hodge theory on compact manifolds
- Levi s problem on strictly pseudoconvex manifolds
- Friedrichs extension lemma and formulation of the Neumann problem
- Solution of the Neumann problem on strictly pseudoconvex
manifolds
- Applications
- Function spaces and regularity of integral operators
-The Bochner-Martinelli formula
- The Koppelman calculus
- Strictly pseudoconvex domains and Levi s problem
- Hodge theory on compact manifolds
- Levi s problem on strictly pseudoconvex manifolds
- Friedrichs extension lemma and formulation of the Neumann problem
- Solution of the Neumann problem on strictly pseudoconvex
manifolds
- Applications
- Function spaces and regularity of integral operators
I The Bochner-Martinelli-Koppelman Formula.- 1 Forms on Product Manifolds.- 2 The Complex Laplacian.- 3 The Fundamental Solution.- 4 The Bochner-Martinelli-Koppelman Formula.- 5 Types of Kernels and Regularity Properties.- 6 Derivatives of the BMK Transform.- 7 Applications of the BMK Formula.- 8 Cauchy-Riemann Functions.- 9 The Bochner-Martinelli Transform for Currents.- 10 Regularity Properties of Isotropic Operators.- 11 Notes.- II Cauchy-Fantappiè Forms.- 1 The Koppelman Formula.- 2 A Generalisation of the Bochner-Martinelli-Koppelman Formula.- 3 Notes.- III Strictly Pseudoconvex Domains in ?n.- 1 Strict Pseudoconvexity.- 2 The Levi Polynomial and Holomorphic Support Functions.- 3 The Basic Homotopy Formula for the Ball.- 4 The Basic Integral Representation.- 5 Admissible Kernels and Lp-Estimates.- 6 Levi's Problem and Vanishing of Cohomology.- 7 The Henkin-Ramírez Formula.- 8 Convex Domains of Finite Type.- 9 Notes.- IV Strictly Pseudoconvex Manifolds.- 1 The Real Laplacian.- 2 Generalised Isotropic Operators.- 3 The Parametrix.- 4 Harmonic Forms and Finiteness Theorems on Compact Manifolds.- 5 Basic Integral Representation on Hermitian Manifolds.- 6 The Levi Problem on Strictly Pseudoconvex Manifolds.- 7 Vanishing of Dolbeault Cohomology Groups.- 8 Notes.- V The a-Neumann Problem.- 1 Operators on Hilbert Spaces.- 2 Hilbert Spaces of Differential Forms.- 3 The Generalised Cauchy Condition.- 4 The Friedrichs-Hörmander Lemma.- 5 The Self-adjointness of the Complex Laplacian and Hörmander's Density Theorem.- 6 The $$ overline partial $$-Neumann Problem.- 7 Notes.- VI Integral Representations for the $$ overline partial $$-Neumann Problem.- 1 The Basic IntegralRepresentation.- 2 Cancellation of Singularities.- 3 The Bergman Projection.- 4 Z-operators.- 5 The Structure of the Kernels Tq.- 6 Asymptotic Development of the Neumann Operator.- 7 Notes.- VII Regularity Properties of Admissible Operators.- 1 Spaces of Functions and Differential Forms.- 2 Behaviour of Ao-operators on Lp-spaces.- 3 Regularity Properties of A1-operators.- 4 Regularity Properties of E1?2n-operators.- 5 Notes.- VIII Regularity of the $$ overline partial $$-Neumann Problem and Applications.- 1 The Basic Hölder Estimate.- 2 The Basic Sobolev Estimate.- 3 The Basic Ck-Estimate.- 4 Dolbeault Cohomology Spaces.- 5 Regularity of the Bergman Projection.- 6 The L1-theory of the $$ overline partial $$-Neumann Problem.- 7 Gleason's Problem for Ck-functions.- 8 Stability of Estimates for the $$ overline partial $$-Neumann Problem.- 9 Mergelyan's Approximation Theorem with Ck Boundary Values on Hermitian Manifolds.- 10 Notes.- Notations.
From the Contents:
-The Bochner-Martinelli formula
- The Koppelman calculus
- Strictly pseudoconvex domains and Levi s problem
- Hodge theory on compact manifolds
- Levi s problem on strictly pseudoconvex manifolds
- Friedrichs extension lemma and formulation of the Neumann problem
- Solution of the Neumann problem on strictly pseudoconvex
manifolds
- Applications
- Function spaces and regularity of integral operators
-The Bochner-Martinelli formula
- The Koppelman calculus
- Strictly pseudoconvex domains and Levi s problem
- Hodge theory on compact manifolds
- Levi s problem on strictly pseudoconvex manifolds
- Friedrichs extension lemma and formulation of the Neumann problem
- Solution of the Neumann problem on strictly pseudoconvex
manifolds
- Applications
- Function spaces and regularity of integral operators
I The Bochner-Martinelli-Koppelman Formula.- 1 Forms on Product Manifolds.- 2 The Complex Laplacian.- 3 The Fundamental Solution.- 4 The Bochner-Martinelli-Koppelman Formula.- 5 Types of Kernels and Regularity Properties.- 6 Derivatives of the BMK Transform.- 7 Applications of the BMK Formula.- 8 Cauchy-Riemann Functions.- 9 The Bochner-Martinelli Transform for Currents.- 10 Regularity Properties of Isotropic Operators.- 11 Notes.- II Cauchy-Fantappiè Forms.- 1 The Koppelman Formula.- 2 A Generalisation of the Bochner-Martinelli-Koppelman Formula.- 3 Notes.- III Strictly Pseudoconvex Domains in ?n.- 1 Strict Pseudoconvexity.- 2 The Levi Polynomial and Holomorphic Support Functions.- 3 The Basic Homotopy Formula for the Ball.- 4 The Basic Integral Representation.- 5 Admissible Kernels and Lp-Estimates.- 6 Levi's Problem and Vanishing of Cohomology.- 7 The Henkin-Ramírez Formula.- 8 Convex Domains of Finite Type.- 9 Notes.- IV Strictly Pseudoconvex Manifolds.- 1 The Real Laplacian.- 2 Generalised Isotropic Operators.- 3 The Parametrix.- 4 Harmonic Forms and Finiteness Theorems on Compact Manifolds.- 5 Basic Integral Representation on Hermitian Manifolds.- 6 The Levi Problem on Strictly Pseudoconvex Manifolds.- 7 Vanishing of Dolbeault Cohomology Groups.- 8 Notes.- V The a-Neumann Problem.- 1 Operators on Hilbert Spaces.- 2 Hilbert Spaces of Differential Forms.- 3 The Generalised Cauchy Condition.- 4 The Friedrichs-Hörmander Lemma.- 5 The Self-adjointness of the Complex Laplacian and Hörmander's Density Theorem.- 6 The $$ overline partial $$-Neumann Problem.- 7 Notes.- VI Integral Representations for the $$ overline partial $$-Neumann Problem.- 1 The Basic IntegralRepresentation.- 2 Cancellation of Singularities.- 3 The Bergman Projection.- 4 Z-operators.- 5 The Structure of the Kernels Tq.- 6 Asymptotic Development of the Neumann Operator.- 7 Notes.- VII Regularity Properties of Admissible Operators.- 1 Spaces of Functions and Differential Forms.- 2 Behaviour of Ao-operators on Lp-spaces.- 3 Regularity Properties of A1-operators.- 4 Regularity Properties of E1?2n-operators.- 5 Notes.- VIII Regularity of the $$ overline partial $$-Neumann Problem and Applications.- 1 The Basic Hölder Estimate.- 2 The Basic Sobolev Estimate.- 3 The Basic Ck-Estimate.- 4 Dolbeault Cohomology Spaces.- 5 Regularity of the Bergman Projection.- 6 The L1-theory of the $$ overline partial $$-Neumann Problem.- 7 Gleason's Problem for Ck-functions.- 8 Stability of Estimates for the $$ overline partial $$-Neumann Problem.- 9 Mergelyan's Approximation Theorem with Ck Boundary Values on Hermitian Manifolds.- 10 Notes.- Notations.