The Chemistry of Membranes Used in Fuel Cells
Degradation and Stabilization
Herausgeber: Schlick, Shulamith
The Chemistry of Membranes Used in Fuel Cells
Degradation and Stabilization
Herausgeber: Schlick, Shulamith
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Examines the important topic of fuel cell science by way of combining membrane design, chemical degradation mechanisms, and stabilization strategies This book describes the mechanism of membrane degradation and stabilization, as well as the search for stable membranes that can be used in alkaline fuel cells. Arranged in ten chapters, the book presents detailed studies that can help readers understand the attack and degradation mechanisms of polymer membranes and mitigation strategies. Coverage starts from fundamentals and moves to different fuel cell membrane types and methods to profile and…mehr
Andere Kunden interessierten sich auch für
- Odorographia, a Natural History of Raw Materials and Drugs Used in the Perfume Industry. Intended to Serve Growers, Manufacturers and Consumers; 142,99 €
- Nanostructured Conductive Polymers337,99 €
- Alessandro GandiniPolymers from Plant Oils224,99 €
- Elias KleinAffinity Membranes365,99 €
- Meenakshi SundarramanStudies on Direct Alcohol Polymer Electrolyte Membrane Fuel Cells55,99 €
- Selvakumar JayaprakasamNanocrystalline Ceramic Thin Films for Solid Oxide Fuel Cells51,99 €
- J. MaxwellPlastics in the Automotive Industry265,99 €
-
-
-
Examines the important topic of fuel cell science by way of combining membrane design, chemical degradation mechanisms, and stabilization strategies This book describes the mechanism of membrane degradation and stabilization, as well as the search for stable membranes that can be used in alkaline fuel cells. Arranged in ten chapters, the book presents detailed studies that can help readers understand the attack and degradation mechanisms of polymer membranes and mitigation strategies. Coverage starts from fundamentals and moves to different fuel cell membrane types and methods to profile and analyze them. The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization features chapters on: Fuel Cell Fundamentals: The Evolution of Fuel Cells and their Components; Degradation Mechanism of Perfluorinated Membranes; Ranking the Stability of Perfluorinated Membranes Used in Fuel Cells to Attack by Hydroxyl Radicals; Stabilization Mechanism of Perfluorinated Membranes by Ce(III) and Mn(II); Hydrocarbon Proton Exchange Membranes; Stabilization of Perfluorinated Membranes Using Nanoparticle Additives; Degradation Mechanism in Aquivion Perfluorinated Membranes and Stabilization Strategies; Anion Exchange Membrane Fuel Cells: Synthesis and Stability; In-depth Profiling of Degradation Processes in Nafion Due to Pt Dissolution and Migration into the Membrane; and Quantum Mechanical Calculations of the Degradation Mechanism in Perfluorinated Membranes. * Brings together aspects of membrane design, chemical degradation mechanisms and stabilization strategies * Emphasizes chemistry of fuel cells, which is underemphasized in other books * Includes discussion of fuel cell performance and behavior, analytical profiling methods, and quantum mechanical calculations The Chemistry of Membranes Used in Fuel Cells is an ideal book for polymer scientists, chemists, chemical engineers, electrochemists, material scientists, energy and electrical engineers, and physicists. It is also important for grad students studying advanced polymers and applications.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 304
- Erscheinungstermin: 13. Februar 2018
- Englisch
- Abmessung: 231mm x 155mm x 20mm
- Gewicht: 567g
- ISBN-13: 9781119196051
- ISBN-10: 1119196051
- Artikelnr.: 48918870
- Verlag: Wiley
- Seitenzahl: 304
- Erscheinungstermin: 13. Februar 2018
- Englisch
- Abmessung: 231mm x 155mm x 20mm
- Gewicht: 567g
- ISBN-13: 9781119196051
- ISBN-10: 1119196051
- Artikelnr.: 48918870
Shulamith Schlick, DSc, is a Professor of Physical and Polymer Chemistry in the Department of Chemistry and Biochemistry, University of Detroit Mercy. One of the foremost authorities in the field of polymer research, Dr. Schlick has held visiting professorships and appointments worldwide. Among her publications is the book Advanced ESR Methods in Polymer Research, published by Wiley in 2006.
Preface xiii About the Editor xvii List of Contributors xix 1 The Evolution of Fuel Cells and Their Components 1 Thomas A. Zawodzinski, Zhijiang Tang, and Nelly Cantillo 1.1 Overview: A Personal Perspective of Recent Developments 1 1.2 Basics of Fuel Cell Operation 3 1.3 Types of Fuel Cells 5 1.3.1 Phosphoric Acid Fuel Cell 5 1.3.2 Molten Carbonate Fuel Cell and Solid Oxide Fuel Cell 5 1.3.3 Proton Exchange Membranes Fuel Cell 6 1.3.4 Alkaline Fuel Cell 6 1.3.5 Solid Acid Fuel Cell 8 1.4 Low Temperature Fuel Cells: Components 8 1.4.1 Membranes in PEM Systems 9 1.4.2 Electrocatalysts in PEM Systems 11 1.4.2.1 Catalyst Layer Structure in PEM Systems 13 1.5 Summary 16 Acknowledgments 16 References 16 2 Degradation Mechanism of Perfluorinated Membranes 19 Marek Danilczuk, Shulamith Schlick, and Frank D. Coms 2.1 Introduction 19 2.2 Fluoride Release Rate 22 2.3 Nuclear Magnetic Resonance 26 2.4 Fourier Transform Infrared Spectroscopy 30 2.5 Electron Spin Resonance 37 2.5.1 Direct ESR Radical Detection in Perfluorinated Membranes 37 2.5.2 Spin Trapping ESR 40 2.5.3 In Situ ESR Fuel Cell 41 2.5.4 Chemical Reactions and Crossover Processes in a Fuel Cell 43 2.5.5 Effect of Membrane Thickness 46 2.6 Conclusions 49 Acknowledgments 51 References 51 3 Ranking the Stability of Perfluorinated Membranes to Attack by Hydroxyl Radicals 55 Marek Danilczuk and Shulamith Schlick 3.1 Introduction 55 3.2 The Chemical Stability of Perfluorinated Ionomers 57 3.3 Electron Spin Resonance Studies of PFSAs Exposed to Hydroxyl Radicals 61 3.3.1 Spin(c)\Trapping ESR 61 3.3.2 Competitive Kinetics: Perfluorinated Ionomers as Competitors for HO
Radicals 62 3.3.3 Ce(III) as Competitor 68 3.4 Conclusions 70 Acknowledgments 72 References 72 4 Stabilization of Perfluorinated Membranes Using Ce3+ and Mn2+ Redox Scavengers: Mechanisms and Applications 75 Frank D. Coms, Shulamith Schlick, and Marek Danilczuk 4.1 Introduction 75 4.2 Oxidant Chemistry 76 4.3 Degradation Mechanisms of PFSA 79 4.4 Mitigation of Chemical Degradation by Redox Quenchers 81 4.4.1 Mitigation Mechanisms of Ce3+ and Mn2+ 82 4.4.1.1 Cerium Mitigation and Chain Scission Processes 89 4.4.2 ESR Spin Trapping Studies 89 4.4.3 Oxidative Stress and Ce3+ Mitigation 91 4.4.3.1 MEA Design 96 4.4.4 Cerium Distribution and Migration 97 4.4.5 CeO2 Mitigation 100 4.4.6 Synergistic Mitigation Strategies 101 4.5 Conclusions 103 Acknowledgments 104 References 104 5 Hydrocarbon Proton Exchange Membranes 107 Lorenz Gubler and Willem H. Koppenol 5.1 Introduction 107 5.2 Radical Intermediates in Fuel Cells 108 5.3 Hydrocarbon Membranes 114 5.4 Chemical Stabilization by Antioxidants 119 5.4.1 Regenerative Radical Scavenging in PFSA Membranes 119 5.4.2 Hydrocarbon Membranes Doped with Organic Antioxidants 121 5.4.3 Polymer(c)\Bound Antioxidants 122 5.5 The Challenge of Regeneration 125 5.5.1 Learnings from Mother Nature 125 5.5.2 Approaches for the Fuel Cell 126 5.6 Concluding Remarks 133 References 134 6 Stabilization of Perfluorinated Membranes Using Nanoparticle Additives 139 Guanxiong Wang, Javier Parrondo, and Vijay Ramani 6.1 Nanoparticle Additives as a Stabilizer for Perfluorinated Membranes 139 6.2 CeO2 and Modified CeO2 Nanoparticles as FRSs 141 6.3 Platinum(c)\Supported Ceria as FRS 152 6.4 Manganese Oxide and Manganese Oxide Composite as FRSs 154 6.5 Metal Nanoparticles as FRSs 160 6.6 Experimental Techniques for the Detection of Free Radicals and Measurement of the Membrane Degradation Rates 163 6.6.1 Fluoride Emission Rate 163 6.6.2 Fluorescence Spectroscopy as a Tool for the Detection and Quantification of Free Radical Degradation in PEMs 163 6.7 Conclusions 164 Acknowledgments 165 References 166 7 Degradation Mechanisms in Aquivion® Perfluorinated Membranes and Stabilization Strategies 171 Vincenzo Arcella, Luca Merlo, and Alessandro Ghielmi 7.1 Introduction 171 7.2 Properties of SSC Ionomers 173 7.3 Properties of Aquivion® Ionomers 173 7.4 The Need for High Stability of PFSA Membranes 177 7.5 PFSA Membrane Degradation in Fuel Cell 177 7.6 Generation of Radical Species in the Fuel Cell Environment 178 7.7 Degradation Studies on Aquivion® Membranes 181 7.8 Stabilization Procedures on Aquivion® Membranes 185 7.9 Conclusions 190 References 190 8 Anion Exchange Membranes: Stability and Synthetic Approach 195 Dongwon Shin, Chulsung Bae, and Yu Seung Kim 8.1 Introduction 195 8.2 Chemical Degradation Mechanisms 196 8.2.1 Degradation of Cationic Groups 196 8.2.1.1 Alkyl Ammoniums 196 8.2.1.2 N(c)\Based Cyclic Cations 199 8.2.1.3 Other Cationic Groups 202 8.2.2 Degradation of Polymer Backbones 204 8.2.2.1 Polyolefins 205 8.2.2.2 Polyaromatics 205 8.2.2.3 Polyacrylates 207 8.2.2.4 Polybenzimidazoles 208 8.2.2.5 Perfluorinated Polymers 208 8.3 Synthetic Approaches 210 8.3.1 Polyolefins 210 8.3.1.1 Polyethylene and Polypropylene 211 8.3.1.2 Polystyrene 212 8.3.1.3 Others 215 8.3.2 Polyaromatics 217 8.3.2.1 Cationic(c)\Group(c)\Tethered Poly(arylene)s 217 8.3.2.2 Poly(arylene)(c)\Containing Cationic Polymer Backbones 219 8.3.2.3 Multication(c)\Tethered Poly(arylene)s 219 8.3.3 Other Polymers 221 8.3.3.1 Polybenzimidazoles 221 8.3.3.2 Polynorbornenes 223 8.3.3.3 Perfluorinated Polymers 224 8.4 Conclusions 225 Acknowledgments 225 References 226 9 Profiling of Membrane Degradation Processes in a Fuel Cell by 2D Spectral-Spatial FTIR 229 Shulamith Schlick and Marek Danilczuk 9.1 Introduction 229 9.2 Optical Images of Nafion® Cross Sections 231 9.3 Line Scan Maps of the Membranes 232 9.4 FTIR Spectra of Nafion® MEAs 232 9.5 Abstraction of a Fluorine Atom on a Carbon in the Nafion® Main Chain by H
235 9.6 Conclusions 237 Acknowledgments 237 References 238 10 Quantum Mechanical Calculations of the Degradation in Perfluorinated Membranes Used in Fuel Cells 241 Ted H. Yu, Boris V. Merinov, and William A. Goddard III 10.1 Introduction 241 10.2 Computational Methods 244 10.3 Results and Discussion 244 10.3.1 Generation of Radicals 244 10.3.1.1 Hydroxyl Radicals 244 10.3.1.2 Hydrogen Radicals, H
247 10.3.1.3 Hydroperoxyl Radicals, HOO
249 10.3.2 Concentrated HO
Conditions versus Fuel Cell Conditions 249 10.3.3 Degradation under Concentrated HO
Conditions 249 10.3.3.1 R(c)
CF2H Polymer Main Chain Defect Initiation 249 10.3.3.2 R(c)
CF
TCF2 Polymer Main Chain Defect Initiation 250 10.3.3.3 R(c)
COOH Polymer Main Chain Defect Initiation 250 10.3.3.4 Propagating Polymer Main Chain Degradation 250 10.3.3.5 Side(c)\Chain Degradation 252 10.3.4 Degradation under Fuel Cell Conditions with Fuel Crossover 256 10.3.4.1 Polymer Main Chain End(c)\Group Initiation 256 10.3.4.2 Propagating Polymer Main Chain Degradation 256 10.3.4.3 Side(c)\Chain Degradation 257 10.3.5 Degradation under Fuel Cell Conditions without Crossover 259 10.3.5.1 Degradation at the Cathode without H2 Crossover 259 10.3.5.2 Degradation at the Anode without O2 Crossover 261 10.4 Summary 265 10.4.1 Concentrated HO
Conditions 265 10.4.2 Fuel Cell Conditions 265 10.4.2.1 Fuel Cell Conditions without Crossover at Cathode 266 10.4.2.2 Fuel Cell Conditions without Crossover at Anode 266 Acknowledgments 267 References 267 Index 271
Radicals 62 3.3.3 Ce(III) as Competitor 68 3.4 Conclusions 70 Acknowledgments 72 References 72 4 Stabilization of Perfluorinated Membranes Using Ce3+ and Mn2+ Redox Scavengers: Mechanisms and Applications 75 Frank D. Coms, Shulamith Schlick, and Marek Danilczuk 4.1 Introduction 75 4.2 Oxidant Chemistry 76 4.3 Degradation Mechanisms of PFSA 79 4.4 Mitigation of Chemical Degradation by Redox Quenchers 81 4.4.1 Mitigation Mechanisms of Ce3+ and Mn2+ 82 4.4.1.1 Cerium Mitigation and Chain Scission Processes 89 4.4.2 ESR Spin Trapping Studies 89 4.4.3 Oxidative Stress and Ce3+ Mitigation 91 4.4.3.1 MEA Design 96 4.4.4 Cerium Distribution and Migration 97 4.4.5 CeO2 Mitigation 100 4.4.6 Synergistic Mitigation Strategies 101 4.5 Conclusions 103 Acknowledgments 104 References 104 5 Hydrocarbon Proton Exchange Membranes 107 Lorenz Gubler and Willem H. Koppenol 5.1 Introduction 107 5.2 Radical Intermediates in Fuel Cells 108 5.3 Hydrocarbon Membranes 114 5.4 Chemical Stabilization by Antioxidants 119 5.4.1 Regenerative Radical Scavenging in PFSA Membranes 119 5.4.2 Hydrocarbon Membranes Doped with Organic Antioxidants 121 5.4.3 Polymer(c)\Bound Antioxidants 122 5.5 The Challenge of Regeneration 125 5.5.1 Learnings from Mother Nature 125 5.5.2 Approaches for the Fuel Cell 126 5.6 Concluding Remarks 133 References 134 6 Stabilization of Perfluorinated Membranes Using Nanoparticle Additives 139 Guanxiong Wang, Javier Parrondo, and Vijay Ramani 6.1 Nanoparticle Additives as a Stabilizer for Perfluorinated Membranes 139 6.2 CeO2 and Modified CeO2 Nanoparticles as FRSs 141 6.3 Platinum(c)\Supported Ceria as FRS 152 6.4 Manganese Oxide and Manganese Oxide Composite as FRSs 154 6.5 Metal Nanoparticles as FRSs 160 6.6 Experimental Techniques for the Detection of Free Radicals and Measurement of the Membrane Degradation Rates 163 6.6.1 Fluoride Emission Rate 163 6.6.2 Fluorescence Spectroscopy as a Tool for the Detection and Quantification of Free Radical Degradation in PEMs 163 6.7 Conclusions 164 Acknowledgments 165 References 166 7 Degradation Mechanisms in Aquivion® Perfluorinated Membranes and Stabilization Strategies 171 Vincenzo Arcella, Luca Merlo, and Alessandro Ghielmi 7.1 Introduction 171 7.2 Properties of SSC Ionomers 173 7.3 Properties of Aquivion® Ionomers 173 7.4 The Need for High Stability of PFSA Membranes 177 7.5 PFSA Membrane Degradation in Fuel Cell 177 7.6 Generation of Radical Species in the Fuel Cell Environment 178 7.7 Degradation Studies on Aquivion® Membranes 181 7.8 Stabilization Procedures on Aquivion® Membranes 185 7.9 Conclusions 190 References 190 8 Anion Exchange Membranes: Stability and Synthetic Approach 195 Dongwon Shin, Chulsung Bae, and Yu Seung Kim 8.1 Introduction 195 8.2 Chemical Degradation Mechanisms 196 8.2.1 Degradation of Cationic Groups 196 8.2.1.1 Alkyl Ammoniums 196 8.2.1.2 N(c)\Based Cyclic Cations 199 8.2.1.3 Other Cationic Groups 202 8.2.2 Degradation of Polymer Backbones 204 8.2.2.1 Polyolefins 205 8.2.2.2 Polyaromatics 205 8.2.2.3 Polyacrylates 207 8.2.2.4 Polybenzimidazoles 208 8.2.2.5 Perfluorinated Polymers 208 8.3 Synthetic Approaches 210 8.3.1 Polyolefins 210 8.3.1.1 Polyethylene and Polypropylene 211 8.3.1.2 Polystyrene 212 8.3.1.3 Others 215 8.3.2 Polyaromatics 217 8.3.2.1 Cationic(c)\Group(c)\Tethered Poly(arylene)s 217 8.3.2.2 Poly(arylene)(c)\Containing Cationic Polymer Backbones 219 8.3.2.3 Multication(c)\Tethered Poly(arylene)s 219 8.3.3 Other Polymers 221 8.3.3.1 Polybenzimidazoles 221 8.3.3.2 Polynorbornenes 223 8.3.3.3 Perfluorinated Polymers 224 8.4 Conclusions 225 Acknowledgments 225 References 226 9 Profiling of Membrane Degradation Processes in a Fuel Cell by 2D Spectral-Spatial FTIR 229 Shulamith Schlick and Marek Danilczuk 9.1 Introduction 229 9.2 Optical Images of Nafion® Cross Sections 231 9.3 Line Scan Maps of the Membranes 232 9.4 FTIR Spectra of Nafion® MEAs 232 9.5 Abstraction of a Fluorine Atom on a Carbon in the Nafion® Main Chain by H
235 9.6 Conclusions 237 Acknowledgments 237 References 238 10 Quantum Mechanical Calculations of the Degradation in Perfluorinated Membranes Used in Fuel Cells 241 Ted H. Yu, Boris V. Merinov, and William A. Goddard III 10.1 Introduction 241 10.2 Computational Methods 244 10.3 Results and Discussion 244 10.3.1 Generation of Radicals 244 10.3.1.1 Hydroxyl Radicals 244 10.3.1.2 Hydrogen Radicals, H
247 10.3.1.3 Hydroperoxyl Radicals, HOO
249 10.3.2 Concentrated HO
Conditions versus Fuel Cell Conditions 249 10.3.3 Degradation under Concentrated HO
Conditions 249 10.3.3.1 R(c)
CF2H Polymer Main Chain Defect Initiation 249 10.3.3.2 R(c)
CF
TCF2 Polymer Main Chain Defect Initiation 250 10.3.3.3 R(c)
COOH Polymer Main Chain Defect Initiation 250 10.3.3.4 Propagating Polymer Main Chain Degradation 250 10.3.3.5 Side(c)\Chain Degradation 252 10.3.4 Degradation under Fuel Cell Conditions with Fuel Crossover 256 10.3.4.1 Polymer Main Chain End(c)\Group Initiation 256 10.3.4.2 Propagating Polymer Main Chain Degradation 256 10.3.4.3 Side(c)\Chain Degradation 257 10.3.5 Degradation under Fuel Cell Conditions without Crossover 259 10.3.5.1 Degradation at the Cathode without H2 Crossover 259 10.3.5.2 Degradation at the Anode without O2 Crossover 261 10.4 Summary 265 10.4.1 Concentrated HO
Conditions 265 10.4.2 Fuel Cell Conditions 265 10.4.2.1 Fuel Cell Conditions without Crossover at Cathode 266 10.4.2.2 Fuel Cell Conditions without Crossover at Anode 266 Acknowledgments 267 References 267 Index 271
Preface xiii About the Editor xvii List of Contributors xix 1 The Evolution of Fuel Cells and Their Components 1 Thomas A. Zawodzinski, Zhijiang Tang, and Nelly Cantillo 1.1 Overview: A Personal Perspective of Recent Developments 1 1.2 Basics of Fuel Cell Operation 3 1.3 Types of Fuel Cells 5 1.3.1 Phosphoric Acid Fuel Cell 5 1.3.2 Molten Carbonate Fuel Cell and Solid Oxide Fuel Cell 5 1.3.3 Proton Exchange Membranes Fuel Cell 6 1.3.4 Alkaline Fuel Cell 6 1.3.5 Solid Acid Fuel Cell 8 1.4 Low Temperature Fuel Cells: Components 8 1.4.1 Membranes in PEM Systems 9 1.4.2 Electrocatalysts in PEM Systems 11 1.4.2.1 Catalyst Layer Structure in PEM Systems 13 1.5 Summary 16 Acknowledgments 16 References 16 2 Degradation Mechanism of Perfluorinated Membranes 19 Marek Danilczuk, Shulamith Schlick, and Frank D. Coms 2.1 Introduction 19 2.2 Fluoride Release Rate 22 2.3 Nuclear Magnetic Resonance 26 2.4 Fourier Transform Infrared Spectroscopy 30 2.5 Electron Spin Resonance 37 2.5.1 Direct ESR Radical Detection in Perfluorinated Membranes 37 2.5.2 Spin Trapping ESR 40 2.5.3 In Situ ESR Fuel Cell 41 2.5.4 Chemical Reactions and Crossover Processes in a Fuel Cell 43 2.5.5 Effect of Membrane Thickness 46 2.6 Conclusions 49 Acknowledgments 51 References 51 3 Ranking the Stability of Perfluorinated Membranes to Attack by Hydroxyl Radicals 55 Marek Danilczuk and Shulamith Schlick 3.1 Introduction 55 3.2 The Chemical Stability of Perfluorinated Ionomers 57 3.3 Electron Spin Resonance Studies of PFSAs Exposed to Hydroxyl Radicals 61 3.3.1 Spin(c)\Trapping ESR 61 3.3.2 Competitive Kinetics: Perfluorinated Ionomers as Competitors for HO
Radicals 62 3.3.3 Ce(III) as Competitor 68 3.4 Conclusions 70 Acknowledgments 72 References 72 4 Stabilization of Perfluorinated Membranes Using Ce3+ and Mn2+ Redox Scavengers: Mechanisms and Applications 75 Frank D. Coms, Shulamith Schlick, and Marek Danilczuk 4.1 Introduction 75 4.2 Oxidant Chemistry 76 4.3 Degradation Mechanisms of PFSA 79 4.4 Mitigation of Chemical Degradation by Redox Quenchers 81 4.4.1 Mitigation Mechanisms of Ce3+ and Mn2+ 82 4.4.1.1 Cerium Mitigation and Chain Scission Processes 89 4.4.2 ESR Spin Trapping Studies 89 4.4.3 Oxidative Stress and Ce3+ Mitigation 91 4.4.3.1 MEA Design 96 4.4.4 Cerium Distribution and Migration 97 4.4.5 CeO2 Mitigation 100 4.4.6 Synergistic Mitigation Strategies 101 4.5 Conclusions 103 Acknowledgments 104 References 104 5 Hydrocarbon Proton Exchange Membranes 107 Lorenz Gubler and Willem H. Koppenol 5.1 Introduction 107 5.2 Radical Intermediates in Fuel Cells 108 5.3 Hydrocarbon Membranes 114 5.4 Chemical Stabilization by Antioxidants 119 5.4.1 Regenerative Radical Scavenging in PFSA Membranes 119 5.4.2 Hydrocarbon Membranes Doped with Organic Antioxidants 121 5.4.3 Polymer(c)\Bound Antioxidants 122 5.5 The Challenge of Regeneration 125 5.5.1 Learnings from Mother Nature 125 5.5.2 Approaches for the Fuel Cell 126 5.6 Concluding Remarks 133 References 134 6 Stabilization of Perfluorinated Membranes Using Nanoparticle Additives 139 Guanxiong Wang, Javier Parrondo, and Vijay Ramani 6.1 Nanoparticle Additives as a Stabilizer for Perfluorinated Membranes 139 6.2 CeO2 and Modified CeO2 Nanoparticles as FRSs 141 6.3 Platinum(c)\Supported Ceria as FRS 152 6.4 Manganese Oxide and Manganese Oxide Composite as FRSs 154 6.5 Metal Nanoparticles as FRSs 160 6.6 Experimental Techniques for the Detection of Free Radicals and Measurement of the Membrane Degradation Rates 163 6.6.1 Fluoride Emission Rate 163 6.6.2 Fluorescence Spectroscopy as a Tool for the Detection and Quantification of Free Radical Degradation in PEMs 163 6.7 Conclusions 164 Acknowledgments 165 References 166 7 Degradation Mechanisms in Aquivion® Perfluorinated Membranes and Stabilization Strategies 171 Vincenzo Arcella, Luca Merlo, and Alessandro Ghielmi 7.1 Introduction 171 7.2 Properties of SSC Ionomers 173 7.3 Properties of Aquivion® Ionomers 173 7.4 The Need for High Stability of PFSA Membranes 177 7.5 PFSA Membrane Degradation in Fuel Cell 177 7.6 Generation of Radical Species in the Fuel Cell Environment 178 7.7 Degradation Studies on Aquivion® Membranes 181 7.8 Stabilization Procedures on Aquivion® Membranes 185 7.9 Conclusions 190 References 190 8 Anion Exchange Membranes: Stability and Synthetic Approach 195 Dongwon Shin, Chulsung Bae, and Yu Seung Kim 8.1 Introduction 195 8.2 Chemical Degradation Mechanisms 196 8.2.1 Degradation of Cationic Groups 196 8.2.1.1 Alkyl Ammoniums 196 8.2.1.2 N(c)\Based Cyclic Cations 199 8.2.1.3 Other Cationic Groups 202 8.2.2 Degradation of Polymer Backbones 204 8.2.2.1 Polyolefins 205 8.2.2.2 Polyaromatics 205 8.2.2.3 Polyacrylates 207 8.2.2.4 Polybenzimidazoles 208 8.2.2.5 Perfluorinated Polymers 208 8.3 Synthetic Approaches 210 8.3.1 Polyolefins 210 8.3.1.1 Polyethylene and Polypropylene 211 8.3.1.2 Polystyrene 212 8.3.1.3 Others 215 8.3.2 Polyaromatics 217 8.3.2.1 Cationic(c)\Group(c)\Tethered Poly(arylene)s 217 8.3.2.2 Poly(arylene)(c)\Containing Cationic Polymer Backbones 219 8.3.2.3 Multication(c)\Tethered Poly(arylene)s 219 8.3.3 Other Polymers 221 8.3.3.1 Polybenzimidazoles 221 8.3.3.2 Polynorbornenes 223 8.3.3.3 Perfluorinated Polymers 224 8.4 Conclusions 225 Acknowledgments 225 References 226 9 Profiling of Membrane Degradation Processes in a Fuel Cell by 2D Spectral-Spatial FTIR 229 Shulamith Schlick and Marek Danilczuk 9.1 Introduction 229 9.2 Optical Images of Nafion® Cross Sections 231 9.3 Line Scan Maps of the Membranes 232 9.4 FTIR Spectra of Nafion® MEAs 232 9.5 Abstraction of a Fluorine Atom on a Carbon in the Nafion® Main Chain by H
235 9.6 Conclusions 237 Acknowledgments 237 References 238 10 Quantum Mechanical Calculations of the Degradation in Perfluorinated Membranes Used in Fuel Cells 241 Ted H. Yu, Boris V. Merinov, and William A. Goddard III 10.1 Introduction 241 10.2 Computational Methods 244 10.3 Results and Discussion 244 10.3.1 Generation of Radicals 244 10.3.1.1 Hydroxyl Radicals 244 10.3.1.2 Hydrogen Radicals, H
247 10.3.1.3 Hydroperoxyl Radicals, HOO
249 10.3.2 Concentrated HO
Conditions versus Fuel Cell Conditions 249 10.3.3 Degradation under Concentrated HO
Conditions 249 10.3.3.1 R(c)
CF2H Polymer Main Chain Defect Initiation 249 10.3.3.2 R(c)
CF
TCF2 Polymer Main Chain Defect Initiation 250 10.3.3.3 R(c)
COOH Polymer Main Chain Defect Initiation 250 10.3.3.4 Propagating Polymer Main Chain Degradation 250 10.3.3.5 Side(c)\Chain Degradation 252 10.3.4 Degradation under Fuel Cell Conditions with Fuel Crossover 256 10.3.4.1 Polymer Main Chain End(c)\Group Initiation 256 10.3.4.2 Propagating Polymer Main Chain Degradation 256 10.3.4.3 Side(c)\Chain Degradation 257 10.3.5 Degradation under Fuel Cell Conditions without Crossover 259 10.3.5.1 Degradation at the Cathode without H2 Crossover 259 10.3.5.2 Degradation at the Anode without O2 Crossover 261 10.4 Summary 265 10.4.1 Concentrated HO
Conditions 265 10.4.2 Fuel Cell Conditions 265 10.4.2.1 Fuel Cell Conditions without Crossover at Cathode 266 10.4.2.2 Fuel Cell Conditions without Crossover at Anode 266 Acknowledgments 267 References 267 Index 271
Radicals 62 3.3.3 Ce(III) as Competitor 68 3.4 Conclusions 70 Acknowledgments 72 References 72 4 Stabilization of Perfluorinated Membranes Using Ce3+ and Mn2+ Redox Scavengers: Mechanisms and Applications 75 Frank D. Coms, Shulamith Schlick, and Marek Danilczuk 4.1 Introduction 75 4.2 Oxidant Chemistry 76 4.3 Degradation Mechanisms of PFSA 79 4.4 Mitigation of Chemical Degradation by Redox Quenchers 81 4.4.1 Mitigation Mechanisms of Ce3+ and Mn2+ 82 4.4.1.1 Cerium Mitigation and Chain Scission Processes 89 4.4.2 ESR Spin Trapping Studies 89 4.4.3 Oxidative Stress and Ce3+ Mitigation 91 4.4.3.1 MEA Design 96 4.4.4 Cerium Distribution and Migration 97 4.4.5 CeO2 Mitigation 100 4.4.6 Synergistic Mitigation Strategies 101 4.5 Conclusions 103 Acknowledgments 104 References 104 5 Hydrocarbon Proton Exchange Membranes 107 Lorenz Gubler and Willem H. Koppenol 5.1 Introduction 107 5.2 Radical Intermediates in Fuel Cells 108 5.3 Hydrocarbon Membranes 114 5.4 Chemical Stabilization by Antioxidants 119 5.4.1 Regenerative Radical Scavenging in PFSA Membranes 119 5.4.2 Hydrocarbon Membranes Doped with Organic Antioxidants 121 5.4.3 Polymer(c)\Bound Antioxidants 122 5.5 The Challenge of Regeneration 125 5.5.1 Learnings from Mother Nature 125 5.5.2 Approaches for the Fuel Cell 126 5.6 Concluding Remarks 133 References 134 6 Stabilization of Perfluorinated Membranes Using Nanoparticle Additives 139 Guanxiong Wang, Javier Parrondo, and Vijay Ramani 6.1 Nanoparticle Additives as a Stabilizer for Perfluorinated Membranes 139 6.2 CeO2 and Modified CeO2 Nanoparticles as FRSs 141 6.3 Platinum(c)\Supported Ceria as FRS 152 6.4 Manganese Oxide and Manganese Oxide Composite as FRSs 154 6.5 Metal Nanoparticles as FRSs 160 6.6 Experimental Techniques for the Detection of Free Radicals and Measurement of the Membrane Degradation Rates 163 6.6.1 Fluoride Emission Rate 163 6.6.2 Fluorescence Spectroscopy as a Tool for the Detection and Quantification of Free Radical Degradation in PEMs 163 6.7 Conclusions 164 Acknowledgments 165 References 166 7 Degradation Mechanisms in Aquivion® Perfluorinated Membranes and Stabilization Strategies 171 Vincenzo Arcella, Luca Merlo, and Alessandro Ghielmi 7.1 Introduction 171 7.2 Properties of SSC Ionomers 173 7.3 Properties of Aquivion® Ionomers 173 7.4 The Need for High Stability of PFSA Membranes 177 7.5 PFSA Membrane Degradation in Fuel Cell 177 7.6 Generation of Radical Species in the Fuel Cell Environment 178 7.7 Degradation Studies on Aquivion® Membranes 181 7.8 Stabilization Procedures on Aquivion® Membranes 185 7.9 Conclusions 190 References 190 8 Anion Exchange Membranes: Stability and Synthetic Approach 195 Dongwon Shin, Chulsung Bae, and Yu Seung Kim 8.1 Introduction 195 8.2 Chemical Degradation Mechanisms 196 8.2.1 Degradation of Cationic Groups 196 8.2.1.1 Alkyl Ammoniums 196 8.2.1.2 N(c)\Based Cyclic Cations 199 8.2.1.3 Other Cationic Groups 202 8.2.2 Degradation of Polymer Backbones 204 8.2.2.1 Polyolefins 205 8.2.2.2 Polyaromatics 205 8.2.2.3 Polyacrylates 207 8.2.2.4 Polybenzimidazoles 208 8.2.2.5 Perfluorinated Polymers 208 8.3 Synthetic Approaches 210 8.3.1 Polyolefins 210 8.3.1.1 Polyethylene and Polypropylene 211 8.3.1.2 Polystyrene 212 8.3.1.3 Others 215 8.3.2 Polyaromatics 217 8.3.2.1 Cationic(c)\Group(c)\Tethered Poly(arylene)s 217 8.3.2.2 Poly(arylene)(c)\Containing Cationic Polymer Backbones 219 8.3.2.3 Multication(c)\Tethered Poly(arylene)s 219 8.3.3 Other Polymers 221 8.3.3.1 Polybenzimidazoles 221 8.3.3.2 Polynorbornenes 223 8.3.3.3 Perfluorinated Polymers 224 8.4 Conclusions 225 Acknowledgments 225 References 226 9 Profiling of Membrane Degradation Processes in a Fuel Cell by 2D Spectral-Spatial FTIR 229 Shulamith Schlick and Marek Danilczuk 9.1 Introduction 229 9.2 Optical Images of Nafion® Cross Sections 231 9.3 Line Scan Maps of the Membranes 232 9.4 FTIR Spectra of Nafion® MEAs 232 9.5 Abstraction of a Fluorine Atom on a Carbon in the Nafion® Main Chain by H
235 9.6 Conclusions 237 Acknowledgments 237 References 238 10 Quantum Mechanical Calculations of the Degradation in Perfluorinated Membranes Used in Fuel Cells 241 Ted H. Yu, Boris V. Merinov, and William A. Goddard III 10.1 Introduction 241 10.2 Computational Methods 244 10.3 Results and Discussion 244 10.3.1 Generation of Radicals 244 10.3.1.1 Hydroxyl Radicals 244 10.3.1.2 Hydrogen Radicals, H
247 10.3.1.3 Hydroperoxyl Radicals, HOO
249 10.3.2 Concentrated HO
Conditions versus Fuel Cell Conditions 249 10.3.3 Degradation under Concentrated HO
Conditions 249 10.3.3.1 R(c)
CF2H Polymer Main Chain Defect Initiation 249 10.3.3.2 R(c)
CF
TCF2 Polymer Main Chain Defect Initiation 250 10.3.3.3 R(c)
COOH Polymer Main Chain Defect Initiation 250 10.3.3.4 Propagating Polymer Main Chain Degradation 250 10.3.3.5 Side(c)\Chain Degradation 252 10.3.4 Degradation under Fuel Cell Conditions with Fuel Crossover 256 10.3.4.1 Polymer Main Chain End(c)\Group Initiation 256 10.3.4.2 Propagating Polymer Main Chain Degradation 256 10.3.4.3 Side(c)\Chain Degradation 257 10.3.5 Degradation under Fuel Cell Conditions without Crossover 259 10.3.5.1 Degradation at the Cathode without H2 Crossover 259 10.3.5.2 Degradation at the Anode without O2 Crossover 261 10.4 Summary 265 10.4.1 Concentrated HO
Conditions 265 10.4.2 Fuel Cell Conditions 265 10.4.2.1 Fuel Cell Conditions without Crossover at Cathode 266 10.4.2.2 Fuel Cell Conditions without Crossover at Anode 266 Acknowledgments 267 References 267 Index 271