List of Contributors xiii
Preface xvii
Part 1 The Vision: The Digital Patient-Improving Research, Development,
Education, and Healthcare Practice 1
1 The Digital Patient 3
C. Donald Combs
Health, The Goal, 4
Personalized Medicine, 4
The Best Outcomes, 5
The Emergence of the Digital Patient, 5
The Human Physiome, 6
Enabling the Digital Patient, 8
P4 Medicine, 11
Conclusion, 11
References, 12
2 Reflecting on Discipulus and Remaining Challenges 15
Vanessa Díaz?]Zuccarini, Mona Alimohammadi, and César Pichardo?]Almarza
Introduction, 15
A Brief Contextual Background and a Call for Integration: Personalized
Medicine is Holistic, 16
The Many Versions of the Digital Patient: On the Road to Medical Avatars,
18
Discipulus: The Digital Patient Technological Challenges and Main
Conclusions, 19
The Remaining Challenges and Big Data, 24
Conclusion, 25
References, 26
3 Advancing the Digital Patient 27
Catherine M. Banks
Introduction, 27
The Digital Patient: Its Early Start, 28
Engaging the Digital Patient, 30
Conclusion, 31
4 The Significance of Modeling and Visualization 33
John A. Sokolowski and Hector M. Garcia
Introduction, 33
Modeling a Complex System: Human Physiology, 34
Medical Modeling, Simulation, and Visualization, 35
Modes and Types of Visualization, 40
Visualization for Patient?]Specific Usefulness, 43
Conclusion, 43
References, 45
Part 2 State of the Art: Systems Biology, the Physiome and Personalized
Health 49
5 The Visible Human: A Graphical Interface for Holistic Modeling and
Simulation 51
Victor M. Spitzer
Introduction, 51
Education, 53
Modeling, 55
Virtual Reality Trainers and Simulators, 56
Conclusion, 58
References, 59
6 The Quantifiable Self: Petabyte by Petabyte 63
C. Donald Combs and Scarlett R. Barham
Introduction, 63
Smarr's Quantified Self, 64
Extending Smarr's Research, 67
The Quantified Self?]Vision, Simplified, 69
Criticism, 69
Conclusion, 71
References, 72
7 Systems Biology and Health Systems Complexity: Implications for the
Digital Patient 73
C. Donald Combs, Scarlett R. Barham, and Peter M. A. Sloot
Introduction, 73
Systems Biology, 75
The Institute for Systems Biology, 76
The Complexity Institute, 78
The Potential of Systems Biology, 81
Criticism, 82
Conclusion, 83
References, 83
8 Personalized Computational Modeling for the Treatment of Cardiac
Arrhythmias 85
Seth H. Weinberg
Introduction, 85
Basics of Cardiac Electrophysiology, 86
Cardiac Modeling Advancements, 89
Regulation of Intracellular Calcium, 90
From Cells to Cables to Sheets to Tissue to the Heart, 91
Where Can we go from Here? What is the Cardiac Model in the Digital
Patient? 95
References, 96
9 The Physiome Project, openEHR Archetypes, and the Digital Patient 101
David P. Nickerson, Koray Atalag, Bernard de Bono, and Peter J. Hunter
Introduction, 101
Multiscale Physiological Processes, 102
Physiome Project Standards, Repositories, and Tools, 103
Archetype Specialization, 112
Archetype Definition Language, 113
Linking Archetypes to External Knowledge Sources (Terminology and
Biomedical Ontologies), 114
Archetype Annotations, 114
OpenEHR Model Repository and Governance, 115
Fast Healthcare Interoperability Resources, 115
A Disease Scenario, 116
Summary and Conclusions, 121
References, 122
10 Physics?]Based Modeling for the Physiome 127
William A. Pruett and Robert L. Hester
Introduction, 127
Modeling Schemes, 128
Future Challenges, 142
Conclusion, 142
Acknowledgments, 143
References, 143
11 Modeling and Understanding the Human Body with SwarmScript 149
Sebastian von Mammen, Stefan Schellmoser, Christian Jacob, and Jörg Hähner
Introduction, 149
Related Work, 150
Multiagent Organization, 152
Designing Interactive Agents, 152
Speaking SwarmScript, 153
Answering Demand: The Design of SwarmScript, 153
Graph?]Based Rule Representation, 153
The Source-Action-Target, 154
SwarmScript INTO3D, 154
A SwarmScript Dialogue, 155
Discussion, 159
Summary, 161
References, 162
12 Using Avatars and Agents to Promote Real?]World Health Behavior Changes
167
Sun Joo (Grace) Ahn
Introduction, 167
Avatars and Agents, 168
Using Agents and Avatars to Promote Health Behavior Changes, 169
Conclusion, 174
References, 174
13 Virtual Reality and Eating, Diabetes, and Obesity 179
Jessica E. Cornick and Jim Blascovich
Introduction, 179
Virtual Reality, 179
Obesity and Weight Stigma, 184
Virtual Reality as a Tool for Combatting Health Issues, 185
Conclusion, 189
References, 189
14 Immersive Virtual Reality to Model Physical: Social Interaction and
Self?]Representation 197
Eric B. Bauman
Introduction, 197
Theory for Immersive Virtual Learning Spaces, 197
Conclusion, 202
References, 203
Part 3 Challenges: Assimilating the Comprehensive Digital Patient 205
15 A Roadmap for Building a Digital Patient System 207
Saikou Y. Diallo and Christopher J. Lynch
Introduction, 207
Approach, 210
Building the Digital Patient Through Interoperability, 211
Conclusion, 221
Acknowledgments, 221
References, 221
16 Multidisciplinary, Interdisciplinary, and Transdisciplinary Research:
Contextualization and Reliability of the Composite 225
Andreas Tolk
Introduction, 225
Interdisciplinarity and Interdisciplinary Research, 226
Data Engineering to Support Interdisciplinarity and Interoperability, 228
Base Object Models to Support Transdisciplinarity and Composability, 233
Open Challenges on Reliability, 235
Summary and Conclusion, 237
References, 239
17 Bayes Net Modeling: The Means to Craft the Digital Patient 241
Joseph A. Tatman and Barry C. Ezell
Introduction, 241
Other Interesting Applications, 246
Conclusion, 251
References, 253
Part 4 Potential Impact: Engaging The Digital Patient 255
18 Virtual Reality Standardized Patients for Clinical Training 257
Albert Rizzo and Thomas Talbot
Introduction, 257
The Rationale for Virtual Standardized Patients, 258
Conversational Virtual Human Agents, 259
Usc Efforts to Create Virtual Standardized Patients, 260
Conclusion, 269
References, 270
19 The Digital Patient: Changing the Paradigm of Healthcare and Impacting
Medical Research and Education 273
V. Andrea Parodi
Introduction, 273
Overview Digital Medicine Projects, 275
Personalized Patient Care Clinical Use, 279
Recommended Education and Training for VPH Project Participation, 281
From Flexner to the 2010 Carnegie Report, 284
Summary Statements, 286
References, 287
20 The Digital Patient: A Vision for Revolutionizing the Electronic Medical
Record and Future Healthcare 289
Richard M. Satava
Introduction, 289
Applications of the Digital Patient as the EMR, 291
Discussion, 296
Conclusion, 297
References, 297
21 Realizing the Digital Patient 299
C. Donald Combs and John A. Sokolowski
Index 305