The Elsi Handbook of Nanotechnology
Risk, Safety, Elsi and Commercialization
Herausgeber: Hussain, Chaudhery Mustansar
The Elsi Handbook of Nanotechnology
Risk, Safety, Elsi and Commercialization
Herausgeber: Hussain, Chaudhery Mustansar
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This ground-breaking handbook uniquely addresses challenges of nanotechnology with respect to safety, risk and ethical, society and legal implications (ELSI) along with the commercialization aspects. This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues…mehr
- Molecular Robotics110,99 €
- Molecular Robotics110,99 €
- Nanotechnology for Sustainable Water Resources258,99 €
- Ahmed Busnaina (ed.)Nanomanufacturing Handbook202,99 €
- Kewal K. JainThe Handbook of Nanomedicine206,99 €
- Kewal K. JainThe Handbook of Nanomedicine148,99 €
- Advances in Bioceramics and Biotechnologies II159,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 480
- Erscheinungstermin: 19. Mai 2020
- Englisch
- Abmessung: 260mm x 183mm x 30mm
- Gewicht: 1095g
- ISBN-13: 9781119591603
- ISBN-10: 1119591600
- Artikelnr.: 55761667
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 480
- Erscheinungstermin: 19. Mai 2020
- Englisch
- Abmessung: 260mm x 183mm x 30mm
- Gewicht: 1095g
- ISBN-13: 9781119591603
- ISBN-10: 1119591600
- Artikelnr.: 55761667
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
1 Nanomaterials and the Environment 1
Shivani Rastogi, Gaurav Sharma and Balasubramanian Kandasubramanian
1.1 Introduction 1
1.1.1 Overview of Nanomaterials 1
1.1.2 Overview of Environmental Health 4
1.1.2.1 Use of NMs in Environmental Health (Nanoremediation) 4
1.2 Applications of Nanomaterials for Environment 6
1.2.1 Nanomaterials for Detection of Environmental Contaminants 6
1.2.2 Nanomaterials for Air Purification 9
1.2.3 Nanomaterials for Water Treatment 10
1.2.4 Nanomaterials for Energy Storage 11
1.2.5 Nanomaterials for Degradation of Land Waste 12
1.3 Limitations of Environmental Nanomaterials 13
1.3.1 Toxicity of Nanomaterials 13
1.3.2 Toxic Effect on Environmental Health 14
1.3.3 Effect of Toxicity on Human Health 15
1.4 Future Scope of Environmental Nanomaterials 17
1.4.1 In Wastewater and Land Waste Treatment 17
1.4.2 In Biomedicine and Air Purification 17
1.4.3 In Electronics and IT Applications 18
1.5 Conclusion 18
References 19
2 Highly Efficient Graphene-Based Nanocomposites for Environmental
Application 25
A.E. Burakov, I.V. Burakova, E.V. Galunin, E.S. Mkrtchyan and A.V. Melezhik
2.1 Features of the Organic Pollutants Adsorption 25
2.1.1 Introduction 25
2.1.2 Types of Organic Pollutants 26
2.1.3 Methods for Removing Organic Pollutants 27
2.1.4 Materials to Extract Organic Pollutants 28
2.2 Adsorption Materials - Graphene-Based Nanocomposites 37
2.2.1 Synthesis of the Sorption Materials 37
2.2.2 Physicochemical Properties of the Sorption Materials 38
2.3 Determining the Adsorption Activity 41
2.3.1 Kinetic Studies under Static Conditions 41
2.3.2 Kinetic Studies under Dynamic Conditions 41
2.3.3 Mathematical Processing of Experimental Data 42
2.4 Conclusion 44
Acknowledgment 44
References 44
3 A Concise Account of the Studies Conducted on the Transport, Fate,
Transformation and Toxicity of Engineered Nanomaterials 51
Sauvik Raha and Md. Ahmaruzzam
3.1 Introduction 52
3.2 Transport of Engineered Nanomaterials 52
3.2.1 Transport in Air 52
3.2.2 Transport in Water 53
3.2.3 Transport in Terrestrial Compartment 54
3.3 Fate and Transformation of Engineered Nanomaterials 55
3.3.1 Fate and Transformation in Air 55
3.3.2 Fate and Transformation in Terrestrial and Aquatic Compartments 56
3.4 Toxicity 57
3.4.1 Toxicity in Aquatic Biomes 57
3.4.2 Toxicity in Terrestrial Biomes 58
3.5 Existing Challenges 58
3.6 Conclusion 59
References 59
4 Nanotechnologies and Advanced Smart Materials: The Case of Architecture
and Civil Engineering 67
Paolo Di Sia
4.1 Introduction 67
4.2 Management of Complexity 69
4.3 Advanced Materials: Definitions, Characteristics, Properties 71
4.4 Classification Criteria: High Performance and Smart Materials 73
4.5 Innovations in the Nanotechnology Field for Building Materials 76
4.6 Applications of Nanostructured Materials in Architecture 79
4.7 Nanostructured Cementitious Materials: High Performance and
Ecoefficiency 81
4.8 Conclusions 84
References 85
5 Life Cycle Environmental Implications of Nanomanufacturing 89
Asmaa Nady Mohammed
5.1 Introduction 89
5.2 Manufacturing of Nanomaterials 90
5.3 Nanomaterials and Their Entry into the Environment 91
5.4 How is the Environment Subjected to Nanomaterials? 91
5.5 Implications of Nanomaterials in the Environment 92
5.6 Potential Health Risks and Environmental Impact of Nanomaterials 92
5.7 Impact of Long-Term Exposure to Graphene-Based Materials In Vivo 93
5.8 Antimicrobial Activity of Graphene and Graphene Oxide Particles 93
5.9 Interaction between Two-Dimension (2D) Nanomaterials and the
Environment 93
5.10 Positive Effects of Nanomaterials on the Environment 94
5.11 Negative Effects of Nanomaterials on the Environment 94
5.12 Life Cycle Assessment (LCA) 94
5.13 Four Phases of Life Cycle Assessment (LCA) 95
5.14 Environmental Nanomaterials (ENMs) Life Cycle 97
5.15 Application of LCA to Nanomaterials 97
5.16 Conclusions 98
References 98
6 Addressing Nanotoxicity: Green Nanotechnology for a Sustainable Future
103
Dipyaman Mohanta and Md. Ahmaruzzaman
6.1 Introduction 103
6.2 Nanotoxicity: A Multifaceted Challenge 104
6.3 Physicochemical Properties of Nanomaterials Influencing Nanotoxicity
105
6.4 Green Nanotechnology: A Proactive Approach to Minimize Nanotoxicity 106
6.4.1 Biosynthesis of Nanomaterials 107
6.4.2 Surface Coating of Nanomaterials to Minimize Biological Interaction
107
6.4.3 Sulfidation of Metal Nanoparticles 108
6.5 Conclusion 108
Acknowledgment 109
References 109
7 Nanotechnology: Occupational Health Hazards of Nanoparticles and
Legalization Challenges 113
Mohadeseh Zarei Ghobadi, Elaheh Afsaneh and Hedayatolah Ghourchian
7.1 Introduction 113
7.2 Hazard and Toxicology of Nanoparticles 115
7.2.1 Size 115
7.2.2 Shape 116
7.2.3 Specific Surface Area 116
7.2.4 Aggregation/Agglomeration 116
7.2.5 Crystallinity 116
7.2.6 Chemical Composition 117
7.2.7 Surface Charge and Modification 117
7.3 Nanoparticle Absorption 117
7.3.1 Dermal Absorption 117
7.3.2 Pulmonary Absorption 118
7.3.3 Eye Absorption 119
7.4 Instruments and Methods for Detection of Nanoparticles 119
7.4.1 Direct Methods 120
7.4.1.1 Optical Particle Sizer (OPS) 120
7.4.1.2 Condensation Particle Counter (CPC) 120
7.4.1.3 Fast Mobility Particle Sizer (FMPS) 120
7.4.1.4 Size-Selective Static Sampler 120
7.4.1.5 Diffusion Charger (DC) 120
7.4.1.6 Electrostatic Low Pressure Impactor (ELPI) 121
7.4.1.7 Electron Microscopy 121
7.4.2 Indirect Methods 121
7.5 Hazard Assessment of Nanoparticles 121
7.6 Risk Assessment and Management of Nanoparticles 122
7.7 Hazard Control 124
7.8 Federal Regulatory Compliance 128
7.8.1 OSHA 128
7.8.2 EPA 129
7.8.3 REACH 129
7.8.4 NIOSH 130
7.9 Summary 130
References 130
8 Bringing Awareness to the Darker Side of Nanoparticles 135
Paramita Karfa, Kartick Chandra Majhi and Rashmi Madhuri
8.1 What is Nano-Sized Particle or Nanoparticle? 136
8.1.1 Classification and Wide Applications of Nanoparticles 137
8.1.1.1 Classification of Nanoparticles According to Their Origin 138
8.1.1.2 Classification of Nanoparticles According to Dimension 138
8.1.1.3 Classification of Nanoparticles According to Their Composition 139
8.1.1.4 Classification of Nanoparticles According to Their
Size/Shape/Morphology 139
8.1.2 Synthesis of Nanoparticles 140
8.1.3 The Other Side of the Coin: Darker Side of Nanoparticles 141
8.1.3.1 Size of the Nanoparticle 143
8.1.3.2 Morphology of the Nanoparticle 143
8.1.3.3 Composition of the Nanoparticle 144
8.1.3.4 Surface Charge of the Nanoparticle 144
8.2 Interaction of Nanoparticle with Living System: Its Effects and
Mechanism 144
8.2.1 Generation of Reactive Oxygen Species (ROS) or Oxidative Stress 145
8.2.2 Inflammation in the Exposed Body Part 145
8.2.3 Genotoxicity 146
8.2.4 Probable Mechanism for Toxicity of Nanoparticle 147
8.3 Toxicological Study of Different Nanoparticles 148
8.3.1 Effect of Silver Nanoparticles (AgNPs) 148
8.3.2 Effect of Gold Nanoparticles (AuNPs) 150
8.3.3 Effect of TiO2 Nanoparticles (TiO2 NPs) 153
8.3.4 Effect of Carbon-Based Nanoparticles 154
8.4 Future Aspect 157
Acknowledgment 158
References 158
9 Mode of Transfer, Toxicity and Negative Impacts of Engineered
Nanoparticles on Environment, Human and Animal Health 165
Duraiarasan Surendhiran, Haiying Cui and Lin Lin
9.1 Introduction 165
9.2 Different Engineered Nanoparticles (ENPs) and Their Commercial Uses 166
9.3 Exposure of ENPs to the Environment 167
9.3.1 Exposure of ENPs to Air 172
9.3.2 Exposure of ENPs to Soil 173
9.3.3 Exposure of ENPs to Water 174
9.4 Hazards and Nanotoxicity of ENPs on Soil Communities 175
9.4.1 Microorganisms 175
9.4.2 Earthworms 180
9.4.3 Plants 181
9.5 Health Effects on Humans and Animals 187
9.5.1 Dermal 187
9.5.2 Inhalation 188
9.5.3 Ingestion 190
9.6 Detection of Nanotoxicity and Its Challenges 192
9.7 Conclusion and Future Needs 194
References 194
10 The Impact of Nanomaterials in Aquatic Systems 205
Nhamo Chaukura, Tatenda C Madzokere, Nyembezi Mgochekim and Thato M
Masilompane
10.1 Introduction 205
10.2 Sources of Nanomaterials 207
10.2.1 Engineered and Non-Engineered Nanomaterials 207
10.2.2 Carbon- and Metal-Based Nanomaterials -Synthesis and Applications
208
10.3 Transport and Environmental Fate of Nanomaterials 209
10.4 The Toxicity of Nanomaterials in Aquatic Systems 210
10.4.1 Toxicity in Plants 211
10.4.2 Toxicity in Animals 212
10.4.3 Methods for the Evaluation of Nanotoxicity 213
10.4.4 Toxicity Mechanisms 215
10.5 Future Research Directions 216
10.6 Conclusion 217
References 217
11 Nanotechnology in the Dairy Industry: Benefits and Risks 223
I.T. Smykov
11.1 Introduction 223
11.2 Associated Colloids (Micelles) 227
11.3 Nanoemulsions 227
11.4 Nanoparticles 228
11.5 Biopolymers 229
11.6 Nanofibers 229
11.7 Nanocapsules 230
11.8 Nanotubes 230
11.9 Nanofilter and Nanofiltration 231
11.10 Food Packaging 232
11.10.1 Nanosensors 233
11.10.2 Nano-Coatings 234
11.11 Toxicity and Risks 234
11.12 Part 1: Dairy Production Using Natural Nanoparticles 238
11.12.1 Casein Micelles 238
11.12.2 Milk Fat Globule 240
11.13 Part 2: The Use of Nanoparticles of Abiotic Origin for Dairy
Production 250
11.13.1 Hydroxyapatite Nanoparticles 250
11.13.2 Silver Nanoparticles 253
11.13.3 Radiation Technologies in the Food Industry 256
11.14 Part 3: Toxicity and Risks Related to Nanotechnology 258
11.14.1 Block Morphometric Risks 262
11.14.2 Block Physicochemical Risks 263
11.14.3 Block Molecular Biological Risks 264
11.14.4 Block Cytological Risks 264
11.14.5 Block Physiological Risks 264
11.14.6 Block Environmental Risks 265
11.14.7 Block Risk Analysis 266
Acknowledgment 267
References 267
12 A Survey of Nanotechnology for Rocket Propulsion: Promises and
Challenges 277
Luigi T. DeLuca
Glossary 277
12.1 Background 280
12.2 Introduction to Nanoenergetic Materials 281
12.2.1 Historical Excursus and Chemical Energy 281
12.2.2 Ultrafine vs. Nano-Sized Particles 281
12.2.3 Scope of Energetic Applications 282
12.2.4 A Word of Caution 282
12.3 Objectives and Contents 282
12.3.1 Reading Map 284
12.3.2 First Generation vs. Advanced nEM 285
12.4 nMe Production and Active Al Content 285
12.4.1 Active Al Content 286
12.4.2 Comments on Active Al Content 286
12.5 Particle Passivation and Coating 286
12.5.1 Native Al2O3 Thickness 288
12.5.2 Particle Passivation 288
12.5.3 Particle Coating 290
12.5.4 Comments on Particle Passivation and Coating 292
12.6 Chemical and Mechanical Activation 292
12.6.1 Roadmap on Chemical Activation 293
12.6.2 Roadmap on Chemical Self-Activation 293
12.6.3 Roadmap on Mechanical Activation 294
12.6.4 Comments on Chemical and Mechanical Activation 296
12.7 Rheology and Mechanical Properties 296
12.7.1 Roadmap on Rheology and Mechanical Properties 296
12.7.2 Comments on Rheology and Mechanical Properties 300
12.8 CCP Formation, Agglomeration, and Clustering 300
12.8.1 Roadmap on CCP Formation, Agglomeration, and Clustering 301
12.8.2 Comments on CCP Formation, Agglomeration, and Clustering 304
12.9 Augmented Steady Ballistic Properties 304
12.10 Effects of nAl on Unsteady Burning and Ignition 307
12.10.1 Unsteady Propellant Burning 307
12.10.2 Ignition of Energetic Particles and Formulations 308
12.11 Safety of Energetic Particles and Formulations 309
12.11.1 nMe and Metalized Energetic Formulations 309
12.11.2 AP/HTPB-Based Solid Propellants 310
12.11.3 Advanced Compositions 311
12.11.4 ESD Hazards 312
12.11.5 Comments on Safety 314
12.12 Aging of Energetic Particles and Formulations 315
12.12.1 Background on Aging 315
12.12.2 nMe 315
12.12.3 Solid Propellants 318
12.12.4 Comments on Aging 319
12.13 Concluding Remarks 319
Acknowledgments 321
References 321
13 Toxicity and Regulatory Concerns for Nanoformulations in Medicine 333
Nimisha Gaur, Navneet Sharma, Aditya Dahiya, Pooja Yadav, Himanshu Ojha,
Ramesh K Goyal and Rakesh Kumar Sharma
13.1 Introduction 334
13.2 Definition of Nanomedicine - Crucial for Regulation 334
13.3 Epidemiological Studies on the Health Hazard 336
13.4 Deposition of Particles in the Organism 336
13.5 Occupational Safety in Medical Facilities 338
13.6 Studies on Biological Effects of TiO2 Nanoparticles 340
13.7 Studies on Biological Effects of Fe2O3 Nanoparticles 340
13.8 Studies on Biological Effects of SiO2 Particles 340
13.9 Effect of Nanoparticles at the Cellular and Molecular Level 341
13.10 Toxicity of Dendrimers 342
13.11 Toxicity of Quantum Dots 343
13.12 Environmental Issues 343
13.12.1 Handling Solid Waste 344
13.12.2 Wastewater Treatment 344
13.12.3 Combustion 345
13.13 Regulatory Measures 345
13.13.1 Medicines or Medical Devices 345
13.13.2 Register and Labeling 346
13.13.3 Better Work Safety 346
13.13.4 Nanowaste 347
13.13.5 Future Directions Required for Developing Regulations 347
13.14 Conclusions 349
References 350
14 A Way to Create Sustainable Environment: Green Nanotechnology -With an
Emphasis on Noble Metals 359
Sirajunnisa Abdul Razack and Surendhiran Duraiarasan
14.1 Introduction 360
14.2 Nanoparticles 360
14.2.1 Properties of Nanoparticles 361
14.2.1.1 Electronic and Optical Properties 362
14.2.1.2 Mechanical Properties 362
14.2.1.3 Thermal Properties 363
14.2.2 Characterization of Nanoparticles 364
14.3 Fabrication 366
14.3.1 Chemical Synthesis 367
14.3.2 Biological Synthesis 370
14.3.2.1 Silver 371
14.3.2.2 Gold 379
14.3.2.3 Platinum 391
14.3.2.4 Platinum Group Metals 394
14.4 Applications of Noble NPs 396
14.4.1 Gold Nanoparticles 396
14.4.2 Silver Nanoparticles 402
14.4.3 Platinum and Platinum Group Metals 404
14.5 Conclusion and Future Perspectives 405
References 406
15 Modern Development with Green Polymer Nanocomposites: An Overview 427
Pratibha Singh, Chandra Shekhar Kushwaha and S.K. Shukla
15.1 Introduction 427
15.2 Classification 428
15.2.1 Natural Polymer 429
15.2.1.1 Cellulose 429
15.2.1.2 Chitin 430
15.2.1.3 Chitosan 431
15.2.2 Synthetic Green Polymer 431
15.2.2.1 PLA 431
15.2.2.2 PVA 432
15.3 Methods of Preparation 432
15.4 Properties 433
15.4.1 Biological Properties 433
15.4.1.1 Biocompatibility 433
15.4.1.2 Biodegradation 434
15.4.1.3 Antimicrobial 434
15.4.2 Physical Properties 435
15.4.2.1 Mechanical Properties 435
15.4.2.2 Magnetic Properties 435
15.5 Applications of Green Polymer Nanocomposite 437
15.5.1 Food Packaging 437
15.5.2 Biomedical 438
15.5.2.1 Biosensor 438
15.5.2.2 Tissue Engineering 441
15.5.2.3 Drug Delivery 443
15.5.2.4 Bone and Cartilage Tissue Regeneration 444
15.5.3 Water Treatment 445
15.5.4 Crop Protection 445
15.5.5 Electronic Devices 447
15.6 Conclusion and Future Prospects 448
Acknowledgments 448
References 448
Index 459
1 Nanomaterials and the Environment 1
Shivani Rastogi, Gaurav Sharma and Balasubramanian Kandasubramanian
1.1 Introduction 1
1.1.1 Overview of Nanomaterials 1
1.1.2 Overview of Environmental Health 4
1.1.2.1 Use of NMs in Environmental Health (Nanoremediation) 4
1.2 Applications of Nanomaterials for Environment 6
1.2.1 Nanomaterials for Detection of Environmental Contaminants 6
1.2.2 Nanomaterials for Air Purification 9
1.2.3 Nanomaterials for Water Treatment 10
1.2.4 Nanomaterials for Energy Storage 11
1.2.5 Nanomaterials for Degradation of Land Waste 12
1.3 Limitations of Environmental Nanomaterials 13
1.3.1 Toxicity of Nanomaterials 13
1.3.2 Toxic Effect on Environmental Health 14
1.3.3 Effect of Toxicity on Human Health 15
1.4 Future Scope of Environmental Nanomaterials 17
1.4.1 In Wastewater and Land Waste Treatment 17
1.4.2 In Biomedicine and Air Purification 17
1.4.3 In Electronics and IT Applications 18
1.5 Conclusion 18
References 19
2 Highly Efficient Graphene-Based Nanocomposites for Environmental
Application 25
A.E. Burakov, I.V. Burakova, E.V. Galunin, E.S. Mkrtchyan and A.V. Melezhik
2.1 Features of the Organic Pollutants Adsorption 25
2.1.1 Introduction 25
2.1.2 Types of Organic Pollutants 26
2.1.3 Methods for Removing Organic Pollutants 27
2.1.4 Materials to Extract Organic Pollutants 28
2.2 Adsorption Materials - Graphene-Based Nanocomposites 37
2.2.1 Synthesis of the Sorption Materials 37
2.2.2 Physicochemical Properties of the Sorption Materials 38
2.3 Determining the Adsorption Activity 41
2.3.1 Kinetic Studies under Static Conditions 41
2.3.2 Kinetic Studies under Dynamic Conditions 41
2.3.3 Mathematical Processing of Experimental Data 42
2.4 Conclusion 44
Acknowledgment 44
References 44
3 A Concise Account of the Studies Conducted on the Transport, Fate,
Transformation and Toxicity of Engineered Nanomaterials 51
Sauvik Raha and Md. Ahmaruzzam
3.1 Introduction 52
3.2 Transport of Engineered Nanomaterials 52
3.2.1 Transport in Air 52
3.2.2 Transport in Water 53
3.2.3 Transport in Terrestrial Compartment 54
3.3 Fate and Transformation of Engineered Nanomaterials 55
3.3.1 Fate and Transformation in Air 55
3.3.2 Fate and Transformation in Terrestrial and Aquatic Compartments 56
3.4 Toxicity 57
3.4.1 Toxicity in Aquatic Biomes 57
3.4.2 Toxicity in Terrestrial Biomes 58
3.5 Existing Challenges 58
3.6 Conclusion 59
References 59
4 Nanotechnologies and Advanced Smart Materials: The Case of Architecture
and Civil Engineering 67
Paolo Di Sia
4.1 Introduction 67
4.2 Management of Complexity 69
4.3 Advanced Materials: Definitions, Characteristics, Properties 71
4.4 Classification Criteria: High Performance and Smart Materials 73
4.5 Innovations in the Nanotechnology Field for Building Materials 76
4.6 Applications of Nanostructured Materials in Architecture 79
4.7 Nanostructured Cementitious Materials: High Performance and
Ecoefficiency 81
4.8 Conclusions 84
References 85
5 Life Cycle Environmental Implications of Nanomanufacturing 89
Asmaa Nady Mohammed
5.1 Introduction 89
5.2 Manufacturing of Nanomaterials 90
5.3 Nanomaterials and Their Entry into the Environment 91
5.4 How is the Environment Subjected to Nanomaterials? 91
5.5 Implications of Nanomaterials in the Environment 92
5.6 Potential Health Risks and Environmental Impact of Nanomaterials 92
5.7 Impact of Long-Term Exposure to Graphene-Based Materials In Vivo 93
5.8 Antimicrobial Activity of Graphene and Graphene Oxide Particles 93
5.9 Interaction between Two-Dimension (2D) Nanomaterials and the
Environment 93
5.10 Positive Effects of Nanomaterials on the Environment 94
5.11 Negative Effects of Nanomaterials on the Environment 94
5.12 Life Cycle Assessment (LCA) 94
5.13 Four Phases of Life Cycle Assessment (LCA) 95
5.14 Environmental Nanomaterials (ENMs) Life Cycle 97
5.15 Application of LCA to Nanomaterials 97
5.16 Conclusions 98
References 98
6 Addressing Nanotoxicity: Green Nanotechnology for a Sustainable Future
103
Dipyaman Mohanta and Md. Ahmaruzzaman
6.1 Introduction 103
6.2 Nanotoxicity: A Multifaceted Challenge 104
6.3 Physicochemical Properties of Nanomaterials Influencing Nanotoxicity
105
6.4 Green Nanotechnology: A Proactive Approach to Minimize Nanotoxicity 106
6.4.1 Biosynthesis of Nanomaterials 107
6.4.2 Surface Coating of Nanomaterials to Minimize Biological Interaction
107
6.4.3 Sulfidation of Metal Nanoparticles 108
6.5 Conclusion 108
Acknowledgment 109
References 109
7 Nanotechnology: Occupational Health Hazards of Nanoparticles and
Legalization Challenges 113
Mohadeseh Zarei Ghobadi, Elaheh Afsaneh and Hedayatolah Ghourchian
7.1 Introduction 113
7.2 Hazard and Toxicology of Nanoparticles 115
7.2.1 Size 115
7.2.2 Shape 116
7.2.3 Specific Surface Area 116
7.2.4 Aggregation/Agglomeration 116
7.2.5 Crystallinity 116
7.2.6 Chemical Composition 117
7.2.7 Surface Charge and Modification 117
7.3 Nanoparticle Absorption 117
7.3.1 Dermal Absorption 117
7.3.2 Pulmonary Absorption 118
7.3.3 Eye Absorption 119
7.4 Instruments and Methods for Detection of Nanoparticles 119
7.4.1 Direct Methods 120
7.4.1.1 Optical Particle Sizer (OPS) 120
7.4.1.2 Condensation Particle Counter (CPC) 120
7.4.1.3 Fast Mobility Particle Sizer (FMPS) 120
7.4.1.4 Size-Selective Static Sampler 120
7.4.1.5 Diffusion Charger (DC) 120
7.4.1.6 Electrostatic Low Pressure Impactor (ELPI) 121
7.4.1.7 Electron Microscopy 121
7.4.2 Indirect Methods 121
7.5 Hazard Assessment of Nanoparticles 121
7.6 Risk Assessment and Management of Nanoparticles 122
7.7 Hazard Control 124
7.8 Federal Regulatory Compliance 128
7.8.1 OSHA 128
7.8.2 EPA 129
7.8.3 REACH 129
7.8.4 NIOSH 130
7.9 Summary 130
References 130
8 Bringing Awareness to the Darker Side of Nanoparticles 135
Paramita Karfa, Kartick Chandra Majhi and Rashmi Madhuri
8.1 What is Nano-Sized Particle or Nanoparticle? 136
8.1.1 Classification and Wide Applications of Nanoparticles 137
8.1.1.1 Classification of Nanoparticles According to Their Origin 138
8.1.1.2 Classification of Nanoparticles According to Dimension 138
8.1.1.3 Classification of Nanoparticles According to Their Composition 139
8.1.1.4 Classification of Nanoparticles According to Their
Size/Shape/Morphology 139
8.1.2 Synthesis of Nanoparticles 140
8.1.3 The Other Side of the Coin: Darker Side of Nanoparticles 141
8.1.3.1 Size of the Nanoparticle 143
8.1.3.2 Morphology of the Nanoparticle 143
8.1.3.3 Composition of the Nanoparticle 144
8.1.3.4 Surface Charge of the Nanoparticle 144
8.2 Interaction of Nanoparticle with Living System: Its Effects and
Mechanism 144
8.2.1 Generation of Reactive Oxygen Species (ROS) or Oxidative Stress 145
8.2.2 Inflammation in the Exposed Body Part 145
8.2.3 Genotoxicity 146
8.2.4 Probable Mechanism for Toxicity of Nanoparticle 147
8.3 Toxicological Study of Different Nanoparticles 148
8.3.1 Effect of Silver Nanoparticles (AgNPs) 148
8.3.2 Effect of Gold Nanoparticles (AuNPs) 150
8.3.3 Effect of TiO2 Nanoparticles (TiO2 NPs) 153
8.3.4 Effect of Carbon-Based Nanoparticles 154
8.4 Future Aspect 157
Acknowledgment 158
References 158
9 Mode of Transfer, Toxicity and Negative Impacts of Engineered
Nanoparticles on Environment, Human and Animal Health 165
Duraiarasan Surendhiran, Haiying Cui and Lin Lin
9.1 Introduction 165
9.2 Different Engineered Nanoparticles (ENPs) and Their Commercial Uses 166
9.3 Exposure of ENPs to the Environment 167
9.3.1 Exposure of ENPs to Air 172
9.3.2 Exposure of ENPs to Soil 173
9.3.3 Exposure of ENPs to Water 174
9.4 Hazards and Nanotoxicity of ENPs on Soil Communities 175
9.4.1 Microorganisms 175
9.4.2 Earthworms 180
9.4.3 Plants 181
9.5 Health Effects on Humans and Animals 187
9.5.1 Dermal 187
9.5.2 Inhalation 188
9.5.3 Ingestion 190
9.6 Detection of Nanotoxicity and Its Challenges 192
9.7 Conclusion and Future Needs 194
References 194
10 The Impact of Nanomaterials in Aquatic Systems 205
Nhamo Chaukura, Tatenda C Madzokere, Nyembezi Mgochekim and Thato M
Masilompane
10.1 Introduction 205
10.2 Sources of Nanomaterials 207
10.2.1 Engineered and Non-Engineered Nanomaterials 207
10.2.2 Carbon- and Metal-Based Nanomaterials -Synthesis and Applications
208
10.3 Transport and Environmental Fate of Nanomaterials 209
10.4 The Toxicity of Nanomaterials in Aquatic Systems 210
10.4.1 Toxicity in Plants 211
10.4.2 Toxicity in Animals 212
10.4.3 Methods for the Evaluation of Nanotoxicity 213
10.4.4 Toxicity Mechanisms 215
10.5 Future Research Directions 216
10.6 Conclusion 217
References 217
11 Nanotechnology in the Dairy Industry: Benefits and Risks 223
I.T. Smykov
11.1 Introduction 223
11.2 Associated Colloids (Micelles) 227
11.3 Nanoemulsions 227
11.4 Nanoparticles 228
11.5 Biopolymers 229
11.6 Nanofibers 229
11.7 Nanocapsules 230
11.8 Nanotubes 230
11.9 Nanofilter and Nanofiltration 231
11.10 Food Packaging 232
11.10.1 Nanosensors 233
11.10.2 Nano-Coatings 234
11.11 Toxicity and Risks 234
11.12 Part 1: Dairy Production Using Natural Nanoparticles 238
11.12.1 Casein Micelles 238
11.12.2 Milk Fat Globule 240
11.13 Part 2: The Use of Nanoparticles of Abiotic Origin for Dairy
Production 250
11.13.1 Hydroxyapatite Nanoparticles 250
11.13.2 Silver Nanoparticles 253
11.13.3 Radiation Technologies in the Food Industry 256
11.14 Part 3: Toxicity and Risks Related to Nanotechnology 258
11.14.1 Block Morphometric Risks 262
11.14.2 Block Physicochemical Risks 263
11.14.3 Block Molecular Biological Risks 264
11.14.4 Block Cytological Risks 264
11.14.5 Block Physiological Risks 264
11.14.6 Block Environmental Risks 265
11.14.7 Block Risk Analysis 266
Acknowledgment 267
References 267
12 A Survey of Nanotechnology for Rocket Propulsion: Promises and
Challenges 277
Luigi T. DeLuca
Glossary 277
12.1 Background 280
12.2 Introduction to Nanoenergetic Materials 281
12.2.1 Historical Excursus and Chemical Energy 281
12.2.2 Ultrafine vs. Nano-Sized Particles 281
12.2.3 Scope of Energetic Applications 282
12.2.4 A Word of Caution 282
12.3 Objectives and Contents 282
12.3.1 Reading Map 284
12.3.2 First Generation vs. Advanced nEM 285
12.4 nMe Production and Active Al Content 285
12.4.1 Active Al Content 286
12.4.2 Comments on Active Al Content 286
12.5 Particle Passivation and Coating 286
12.5.1 Native Al2O3 Thickness 288
12.5.2 Particle Passivation 288
12.5.3 Particle Coating 290
12.5.4 Comments on Particle Passivation and Coating 292
12.6 Chemical and Mechanical Activation 292
12.6.1 Roadmap on Chemical Activation 293
12.6.2 Roadmap on Chemical Self-Activation 293
12.6.3 Roadmap on Mechanical Activation 294
12.6.4 Comments on Chemical and Mechanical Activation 296
12.7 Rheology and Mechanical Properties 296
12.7.1 Roadmap on Rheology and Mechanical Properties 296
12.7.2 Comments on Rheology and Mechanical Properties 300
12.8 CCP Formation, Agglomeration, and Clustering 300
12.8.1 Roadmap on CCP Formation, Agglomeration, and Clustering 301
12.8.2 Comments on CCP Formation, Agglomeration, and Clustering 304
12.9 Augmented Steady Ballistic Properties 304
12.10 Effects of nAl on Unsteady Burning and Ignition 307
12.10.1 Unsteady Propellant Burning 307
12.10.2 Ignition of Energetic Particles and Formulations 308
12.11 Safety of Energetic Particles and Formulations 309
12.11.1 nMe and Metalized Energetic Formulations 309
12.11.2 AP/HTPB-Based Solid Propellants 310
12.11.3 Advanced Compositions 311
12.11.4 ESD Hazards 312
12.11.5 Comments on Safety 314
12.12 Aging of Energetic Particles and Formulations 315
12.12.1 Background on Aging 315
12.12.2 nMe 315
12.12.3 Solid Propellants 318
12.12.4 Comments on Aging 319
12.13 Concluding Remarks 319
Acknowledgments 321
References 321
13 Toxicity and Regulatory Concerns for Nanoformulations in Medicine 333
Nimisha Gaur, Navneet Sharma, Aditya Dahiya, Pooja Yadav, Himanshu Ojha,
Ramesh K Goyal and Rakesh Kumar Sharma
13.1 Introduction 334
13.2 Definition of Nanomedicine - Crucial for Regulation 334
13.3 Epidemiological Studies on the Health Hazard 336
13.4 Deposition of Particles in the Organism 336
13.5 Occupational Safety in Medical Facilities 338
13.6 Studies on Biological Effects of TiO2 Nanoparticles 340
13.7 Studies on Biological Effects of Fe2O3 Nanoparticles 340
13.8 Studies on Biological Effects of SiO2 Particles 340
13.9 Effect of Nanoparticles at the Cellular and Molecular Level 341
13.10 Toxicity of Dendrimers 342
13.11 Toxicity of Quantum Dots 343
13.12 Environmental Issues 343
13.12.1 Handling Solid Waste 344
13.12.2 Wastewater Treatment 344
13.12.3 Combustion 345
13.13 Regulatory Measures 345
13.13.1 Medicines or Medical Devices 345
13.13.2 Register and Labeling 346
13.13.3 Better Work Safety 346
13.13.4 Nanowaste 347
13.13.5 Future Directions Required for Developing Regulations 347
13.14 Conclusions 349
References 350
14 A Way to Create Sustainable Environment: Green Nanotechnology -With an
Emphasis on Noble Metals 359
Sirajunnisa Abdul Razack and Surendhiran Duraiarasan
14.1 Introduction 360
14.2 Nanoparticles 360
14.2.1 Properties of Nanoparticles 361
14.2.1.1 Electronic and Optical Properties 362
14.2.1.2 Mechanical Properties 362
14.2.1.3 Thermal Properties 363
14.2.2 Characterization of Nanoparticles 364
14.3 Fabrication 366
14.3.1 Chemical Synthesis 367
14.3.2 Biological Synthesis 370
14.3.2.1 Silver 371
14.3.2.2 Gold 379
14.3.2.3 Platinum 391
14.3.2.4 Platinum Group Metals 394
14.4 Applications of Noble NPs 396
14.4.1 Gold Nanoparticles 396
14.4.2 Silver Nanoparticles 402
14.4.3 Platinum and Platinum Group Metals 404
14.5 Conclusion and Future Perspectives 405
References 406
15 Modern Development with Green Polymer Nanocomposites: An Overview 427
Pratibha Singh, Chandra Shekhar Kushwaha and S.K. Shukla
15.1 Introduction 427
15.2 Classification 428
15.2.1 Natural Polymer 429
15.2.1.1 Cellulose 429
15.2.1.2 Chitin 430
15.2.1.3 Chitosan 431
15.2.2 Synthetic Green Polymer 431
15.2.2.1 PLA 431
15.2.2.2 PVA 432
15.3 Methods of Preparation 432
15.4 Properties 433
15.4.1 Biological Properties 433
15.4.1.1 Biocompatibility 433
15.4.1.2 Biodegradation 434
15.4.1.3 Antimicrobial 434
15.4.2 Physical Properties 435
15.4.2.1 Mechanical Properties 435
15.4.2.2 Magnetic Properties 435
15.5 Applications of Green Polymer Nanocomposite 437
15.5.1 Food Packaging 437
15.5.2 Biomedical 438
15.5.2.1 Biosensor 438
15.5.2.2 Tissue Engineering 441
15.5.2.3 Drug Delivery 443
15.5.2.4 Bone and Cartilage Tissue Regeneration 444
15.5.3 Water Treatment 445
15.5.4 Crop Protection 445
15.5.5 Electronic Devices 447
15.6 Conclusion and Future Prospects 448
Acknowledgments 448
References 448
Index 459