Peter Moczo, Jozef Kristek, Martin Gális
The Finite-Difference Modelling of Earthquake Motions
Waves and Ruptures
Peter Moczo, Jozef Kristek, Martin Gális
The Finite-Difference Modelling of Earthquake Motions
Waves and Ruptures
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A systematic tutorial introduction to the finite-difference (FD) numerical modelling technique for professionals, academic researchers, and graduate students in seismology.
Andere Kunden interessierten sich auch für
- Rob SimmSeismic Amplitude102,99 €
- Robert YeatsEarthquake Time Bombs44,99 €
- David NabhanEarthquake Prediction21,99 €
- The Stromboli Volcano168,99 €
- B. V. KostrovPrinciples of Earthquake Source Mechanics185,99 €
- Hua-Wei ZhouPractical Seismic Data Analysis108,99 €
- Robin George AndrewsSuper Volcanoes20,99 €
-
-
-
A systematic tutorial introduction to the finite-difference (FD) numerical modelling technique for professionals, academic researchers, and graduate students in seismology.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 383
- Erscheinungstermin: 23. Juni 2014
- Englisch
- Abmessung: 254mm x 182mm x 25mm
- Gewicht: 920g
- ISBN-13: 9781107028814
- ISBN-10: 1107028817
- Artikelnr.: 40842802
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Cambridge University Press
- Seitenzahl: 383
- Erscheinungstermin: 23. Juni 2014
- Englisch
- Abmessung: 254mm x 182mm x 25mm
- Gewicht: 920g
- ISBN-13: 9781107028814
- ISBN-10: 1107028817
- Artikelnr.: 40842802
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Peter Moczo is a professor of physics and Chair of the Department of Astronomy, Physics of the Earth, and Meteorology at Comenius University, Bratislava. He is the main author of several monographs and extended articles on the finite-difference method (including the highly-respected Acta Physica Slovaca article which partly forms the basis of this book). Professor Moczo is a member of the Learned Society of the Slovak Academy of Sciences, and his awards include the Prize of the Slovak Academy of Sciences for Infrastructure, the Silver Medal of the Faculty of Mathematics, Physics and Informatics of Comenius University, and the Dionyz Stur Medal of the Slovak Academy of Sciences for Achievements in Natural Sciences. Along with his two co-authors, Professor Moczo is a leading member of the (informal) NuQuake research group, studying numerical modelling of seismic wave propagation and earthquake motion, at Comenius University and the Slovak Academy of Science in Bratislava. As part of this group, all three authors were major contributors to the elaboration of the finite-difference method and hybrid finite-difference/finite-element method.
Preface
Acknowledgements
List of symbols
1. Introduction
Part I. Mathematical-Physical Model: 2. Basic mathematical-physical model
3. Rheological models of continuum
4. Earthquake source
Part II. Time-Domain Numerical Modelling and the Finite-Difference Method: 5. Time-domain numerical methods
6. Introduction to the finite-difference (FD) method
7. 1D problems
8. Basic comparison of the 1D and 3D FD schemes
9. The FD method applied to seismic-wave propagation - a brief historical summary
10. Overview of the FD schemes for 3D problems
11. Velocity-stress staggered-grid scheme for an unbounded heterogeneous viscoelastic medium
12. Velocity-stress staggered-grid schemes for a free surface
13. Discontinuous spatial grid
14. Perfectly matched layer
15. Simulation of the kinematic sources
16. Simulation of the dynamic rupture propagation
17. Other wavefield excitations
18. Memory optimization
19. Complete FD algorithm for a 3D problem based on the 4th-order velocity-stress staggered-grid scheme
20. Finite-element (FE) method
21. TSN modelling of rupture propagation with the adaptive smoothing algorithm
22. Hybrid FD-FE method
Part III. Numerical Modelling of Seismic Motion at Real Sites: 23. Mygdonian Basin, Greece
24. Grenoble Valley, France
Part IV. Concluding Remarks: Appendix. Time-frequency (TF) misfit and goodness-of-fit criteria for quantitative comparison of time signals Miriam Kristekova, Peter Moczo, Josef Kristek and Martin Gális
References
Index.
Acknowledgements
List of symbols
1. Introduction
Part I. Mathematical-Physical Model: 2. Basic mathematical-physical model
3. Rheological models of continuum
4. Earthquake source
Part II. Time-Domain Numerical Modelling and the Finite-Difference Method: 5. Time-domain numerical methods
6. Introduction to the finite-difference (FD) method
7. 1D problems
8. Basic comparison of the 1D and 3D FD schemes
9. The FD method applied to seismic-wave propagation - a brief historical summary
10. Overview of the FD schemes for 3D problems
11. Velocity-stress staggered-grid scheme for an unbounded heterogeneous viscoelastic medium
12. Velocity-stress staggered-grid schemes for a free surface
13. Discontinuous spatial grid
14. Perfectly matched layer
15. Simulation of the kinematic sources
16. Simulation of the dynamic rupture propagation
17. Other wavefield excitations
18. Memory optimization
19. Complete FD algorithm for a 3D problem based on the 4th-order velocity-stress staggered-grid scheme
20. Finite-element (FE) method
21. TSN modelling of rupture propagation with the adaptive smoothing algorithm
22. Hybrid FD-FE method
Part III. Numerical Modelling of Seismic Motion at Real Sites: 23. Mygdonian Basin, Greece
24. Grenoble Valley, France
Part IV. Concluding Remarks: Appendix. Time-frequency (TF) misfit and goodness-of-fit criteria for quantitative comparison of time signals Miriam Kristekova, Peter Moczo, Josef Kristek and Martin Gális
References
Index.
Preface
Acknowledgements
List of symbols
1. Introduction
Part I. Mathematical-Physical Model: 2. Basic mathematical-physical model
3. Rheological models of continuum
4. Earthquake source
Part II. Time-Domain Numerical Modelling and the Finite-Difference Method: 5. Time-domain numerical methods
6. Introduction to the finite-difference (FD) method
7. 1D problems
8. Basic comparison of the 1D and 3D FD schemes
9. The FD method applied to seismic-wave propagation - a brief historical summary
10. Overview of the FD schemes for 3D problems
11. Velocity-stress staggered-grid scheme for an unbounded heterogeneous viscoelastic medium
12. Velocity-stress staggered-grid schemes for a free surface
13. Discontinuous spatial grid
14. Perfectly matched layer
15. Simulation of the kinematic sources
16. Simulation of the dynamic rupture propagation
17. Other wavefield excitations
18. Memory optimization
19. Complete FD algorithm for a 3D problem based on the 4th-order velocity-stress staggered-grid scheme
20. Finite-element (FE) method
21. TSN modelling of rupture propagation with the adaptive smoothing algorithm
22. Hybrid FD-FE method
Part III. Numerical Modelling of Seismic Motion at Real Sites: 23. Mygdonian Basin, Greece
24. Grenoble Valley, France
Part IV. Concluding Remarks: Appendix. Time-frequency (TF) misfit and goodness-of-fit criteria for quantitative comparison of time signals Miriam Kristekova, Peter Moczo, Josef Kristek and Martin Gális
References
Index.
Acknowledgements
List of symbols
1. Introduction
Part I. Mathematical-Physical Model: 2. Basic mathematical-physical model
3. Rheological models of continuum
4. Earthquake source
Part II. Time-Domain Numerical Modelling and the Finite-Difference Method: 5. Time-domain numerical methods
6. Introduction to the finite-difference (FD) method
7. 1D problems
8. Basic comparison of the 1D and 3D FD schemes
9. The FD method applied to seismic-wave propagation - a brief historical summary
10. Overview of the FD schemes for 3D problems
11. Velocity-stress staggered-grid scheme for an unbounded heterogeneous viscoelastic medium
12. Velocity-stress staggered-grid schemes for a free surface
13. Discontinuous spatial grid
14. Perfectly matched layer
15. Simulation of the kinematic sources
16. Simulation of the dynamic rupture propagation
17. Other wavefield excitations
18. Memory optimization
19. Complete FD algorithm for a 3D problem based on the 4th-order velocity-stress staggered-grid scheme
20. Finite-element (FE) method
21. TSN modelling of rupture propagation with the adaptive smoothing algorithm
22. Hybrid FD-FE method
Part III. Numerical Modelling of Seismic Motion at Real Sites: 23. Mygdonian Basin, Greece
24. Grenoble Valley, France
Part IV. Concluding Remarks: Appendix. Time-frequency (TF) misfit and goodness-of-fit criteria for quantitative comparison of time signals Miriam Kristekova, Peter Moczo, Josef Kristek and Martin Gális
References
Index.