Tevian Dray
The Geometry of Special Relativity
Tevian Dray
The Geometry of Special Relativity
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The book treats the geometry of hyperbolas as the key to understanding special relativity. The author simplifies the formulas and emphasizes their geometric content. Prior mastery of (ordinary) trigonometry is sufficient for most of the material presented.
Andere Kunden interessierten sich auch für
- N. G. CoganMathematical Modeling the Life Sciences94,99 €
- David BohmThe Special Theory of Relativity30,99 €
- Albert EinsteinThe Meaning of Relativity29,99 €
- James LuscombeCore Principles of Special and General Relativity70,99 €
- Albert EinsteinRelativity29,99 €
- Gerald Jay SussmanFunctional Differential Geometry60,99 €
- Mark HunacekQuantitative Literacy Through Games and Gambling59,99 €
-
-
-
The book treats the geometry of hyperbolas as the key to understanding special relativity. The author simplifies the formulas and emphasizes their geometric content. Prior mastery of (ordinary) trigonometry is sufficient for most of the material presented.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Textbooks in Mathematics
- Verlag: Taylor & Francis Ltd
- 2 ed
- Seitenzahl: 196
- Erscheinungstermin: 10. Juni 2021
- Englisch
- Abmessung: 234mm x 157mm x 12mm
- Gewicht: 346g
- ISBN-13: 9781138063921
- ISBN-10: 1138063924
- Artikelnr.: 61288753
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Textbooks in Mathematics
- Verlag: Taylor & Francis Ltd
- 2 ed
- Seitenzahl: 196
- Erscheinungstermin: 10. Juni 2021
- Englisch
- Abmessung: 234mm x 157mm x 12mm
- Gewicht: 346g
- ISBN-13: 9781138063921
- ISBN-10: 1138063924
- Artikelnr.: 61288753
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Tevian Dray is a Professor of Mathematics at Oregon State University. His research lies at the interface between mathematics and physics, involving differential geometry and general relativity, as well as nonassociative algebra and particle physics; he also studies student understanding of "middle-division" mathematics and physics content. Educated at MIT and Berkeley, he held postdoctoral positions in both mathematics and physics in several countries prior to coming to OSU in 1988. Professor Dray is a Fellow of the American Physical Society for his work in relativity, and an award-winning teacher.
1. Introduction. 1.1 Newton's Relativity. 1.2. Einstein's Relativity. 2.
The Physics of Special Relativity. 2.1. Observers and Measurement. 2.2. The
Postulates of Special Relativity. 2.3. Time Dilation and Length
Contraction. 2.4. Lorentz Transformations. 2.5. Addition of Velocities.
2.6. The Interval. 3. Circle Geometry. 3.1. The Geometry of Trigonometry.
3.2. Distance. 3.3. Circle Trigonometry. 3.4. Triangle Trigonometry. 3.5.
Rotations. 3.6. Projections. 3.7. Addition Formulas. 4. Hyperbola Geometry.
4.1. Hyperbolic Trigonometry. 4.2 Distance. 4.3. Hyperbola Trigonometry.
4.4. Triangle Trigonometry. 4.5. Rotations. 4.6. Projections. 4.7. Addition
Formulas. 4.8. Combining Circle and Hyperbola Trigonometry. 5. The Geometry
of Special Relativity. 5.1. The Surveyors. 5.2. Spacetime Diagrams. 5.3.
Lorentz Transformations. 5.4. Space and Time. 5.5. The Geometry of Lorentz
Transformations. 5.6. Dot Product. 6. Applications. 6.1. Drawing Spacetime
Diagrams. 6.2. Addition of Velocities. 6.3. Length Contraction. 6.4. Time
Dilation. 6.5. Doppler Shift. 7. Problems I. 7.1. Warmup. 7.2. Practice.
7.3. The Getaway. 7.4. Angles Are Not Invariant. 7.5. Interstellar Travel.
7.6. Observation. 7.7 Cosmic Rays. 7.8. Doppler Effect. 8. Paradoxes. 8.1.
Special Relativity Paradoxes. 8.2. The Pole and Barn Paradox. 8.3. The Twin
Paradox. 8.4. Manhole Covers. 9. Relativistic Mechanics. 9.1. Proper Time.
9.2. Velocity. 9.3. Conservation Laws. 9.4. Energy. 9.5. Useful Formulas.
9.6. Higher Dimensions. 10. Problems II. 10.1. Mass Isn't Conserved. 10.2.
Identical Particles. 10.3. Pion Decay I. 10.4. Mass and Energy. 10.5. Pion
Decay II. 11. Relativistic Electromagnetism. 11.1. Magnetism from
Electricity. 11.2. Lorentz Transformations. 11.3. Vectors. 11.4. Tensors.
11.5. The Electromagnetic Field. 11.6. Maxwell's Equations. 11.7. The
Unification of Special Relativity. 12. Problems III. 12.1. Vanishing
Fields. 12.2. Parallel and Perpendicular Fields. 13. Beyond Special
Relativity. 13.1. Problems with Special Relativity. 13.2. Tidal Effects.
13.3. Differential Geometry. 13.4. General Relativity. 13.5. Uniform
Acceleration and Black Holes. 14. Three-Dimensional Spacetime Diagrams.
14.1. Introduction. 14.2. The Rising Manhole. 14.3. The Moving Spotlight.
14.4. The Lorentzian Inner Product. 14.5. Transverse Directions. 15.
Minkowski Area via Light Boxes. 15.1. Area in Special Relativity. 15.2.
Measuring with Light Boxes. 16. Hyperbolic Geometry. 16.1. Non-Euclidean
Geometry. 16.2. The Hyperboloid. 16.3. The Poincaré Disk. 16.4. The Klein
Disk. 16.5. The Pseudosphere. 17. Calculus. 17.1. Circle Trigonometry.
17.2. Hyperbolic Trigonometry. 17.3. Exponentials (and Logarithms).
Bibliography. Index.
The Physics of Special Relativity. 2.1. Observers and Measurement. 2.2. The
Postulates of Special Relativity. 2.3. Time Dilation and Length
Contraction. 2.4. Lorentz Transformations. 2.5. Addition of Velocities.
2.6. The Interval. 3. Circle Geometry. 3.1. The Geometry of Trigonometry.
3.2. Distance. 3.3. Circle Trigonometry. 3.4. Triangle Trigonometry. 3.5.
Rotations. 3.6. Projections. 3.7. Addition Formulas. 4. Hyperbola Geometry.
4.1. Hyperbolic Trigonometry. 4.2 Distance. 4.3. Hyperbola Trigonometry.
4.4. Triangle Trigonometry. 4.5. Rotations. 4.6. Projections. 4.7. Addition
Formulas. 4.8. Combining Circle and Hyperbola Trigonometry. 5. The Geometry
of Special Relativity. 5.1. The Surveyors. 5.2. Spacetime Diagrams. 5.3.
Lorentz Transformations. 5.4. Space and Time. 5.5. The Geometry of Lorentz
Transformations. 5.6. Dot Product. 6. Applications. 6.1. Drawing Spacetime
Diagrams. 6.2. Addition of Velocities. 6.3. Length Contraction. 6.4. Time
Dilation. 6.5. Doppler Shift. 7. Problems I. 7.1. Warmup. 7.2. Practice.
7.3. The Getaway. 7.4. Angles Are Not Invariant. 7.5. Interstellar Travel.
7.6. Observation. 7.7 Cosmic Rays. 7.8. Doppler Effect. 8. Paradoxes. 8.1.
Special Relativity Paradoxes. 8.2. The Pole and Barn Paradox. 8.3. The Twin
Paradox. 8.4. Manhole Covers. 9. Relativistic Mechanics. 9.1. Proper Time.
9.2. Velocity. 9.3. Conservation Laws. 9.4. Energy. 9.5. Useful Formulas.
9.6. Higher Dimensions. 10. Problems II. 10.1. Mass Isn't Conserved. 10.2.
Identical Particles. 10.3. Pion Decay I. 10.4. Mass and Energy. 10.5. Pion
Decay II. 11. Relativistic Electromagnetism. 11.1. Magnetism from
Electricity. 11.2. Lorentz Transformations. 11.3. Vectors. 11.4. Tensors.
11.5. The Electromagnetic Field. 11.6. Maxwell's Equations. 11.7. The
Unification of Special Relativity. 12. Problems III. 12.1. Vanishing
Fields. 12.2. Parallel and Perpendicular Fields. 13. Beyond Special
Relativity. 13.1. Problems with Special Relativity. 13.2. Tidal Effects.
13.3. Differential Geometry. 13.4. General Relativity. 13.5. Uniform
Acceleration and Black Holes. 14. Three-Dimensional Spacetime Diagrams.
14.1. Introduction. 14.2. The Rising Manhole. 14.3. The Moving Spotlight.
14.4. The Lorentzian Inner Product. 14.5. Transverse Directions. 15.
Minkowski Area via Light Boxes. 15.1. Area in Special Relativity. 15.2.
Measuring with Light Boxes. 16. Hyperbolic Geometry. 16.1. Non-Euclidean
Geometry. 16.2. The Hyperboloid. 16.3. The Poincaré Disk. 16.4. The Klein
Disk. 16.5. The Pseudosphere. 17. Calculus. 17.1. Circle Trigonometry.
17.2. Hyperbolic Trigonometry. 17.3. Exponentials (and Logarithms).
Bibliography. Index.
1. Introduction. 1.1 Newton's Relativity. 1.2. Einstein's Relativity. 2.
The Physics of Special Relativity. 2.1. Observers and Measurement. 2.2. The
Postulates of Special Relativity. 2.3. Time Dilation and Length
Contraction. 2.4. Lorentz Transformations. 2.5. Addition of Velocities.
2.6. The Interval. 3. Circle Geometry. 3.1. The Geometry of Trigonometry.
3.2. Distance. 3.3. Circle Trigonometry. 3.4. Triangle Trigonometry. 3.5.
Rotations. 3.6. Projections. 3.7. Addition Formulas. 4. Hyperbola Geometry.
4.1. Hyperbolic Trigonometry. 4.2 Distance. 4.3. Hyperbola Trigonometry.
4.4. Triangle Trigonometry. 4.5. Rotations. 4.6. Projections. 4.7. Addition
Formulas. 4.8. Combining Circle and Hyperbola Trigonometry. 5. The Geometry
of Special Relativity. 5.1. The Surveyors. 5.2. Spacetime Diagrams. 5.3.
Lorentz Transformations. 5.4. Space and Time. 5.5. The Geometry of Lorentz
Transformations. 5.6. Dot Product. 6. Applications. 6.1. Drawing Spacetime
Diagrams. 6.2. Addition of Velocities. 6.3. Length Contraction. 6.4. Time
Dilation. 6.5. Doppler Shift. 7. Problems I. 7.1. Warmup. 7.2. Practice.
7.3. The Getaway. 7.4. Angles Are Not Invariant. 7.5. Interstellar Travel.
7.6. Observation. 7.7 Cosmic Rays. 7.8. Doppler Effect. 8. Paradoxes. 8.1.
Special Relativity Paradoxes. 8.2. The Pole and Barn Paradox. 8.3. The Twin
Paradox. 8.4. Manhole Covers. 9. Relativistic Mechanics. 9.1. Proper Time.
9.2. Velocity. 9.3. Conservation Laws. 9.4. Energy. 9.5. Useful Formulas.
9.6. Higher Dimensions. 10. Problems II. 10.1. Mass Isn't Conserved. 10.2.
Identical Particles. 10.3. Pion Decay I. 10.4. Mass and Energy. 10.5. Pion
Decay II. 11. Relativistic Electromagnetism. 11.1. Magnetism from
Electricity. 11.2. Lorentz Transformations. 11.3. Vectors. 11.4. Tensors.
11.5. The Electromagnetic Field. 11.6. Maxwell's Equations. 11.7. The
Unification of Special Relativity. 12. Problems III. 12.1. Vanishing
Fields. 12.2. Parallel and Perpendicular Fields. 13. Beyond Special
Relativity. 13.1. Problems with Special Relativity. 13.2. Tidal Effects.
13.3. Differential Geometry. 13.4. General Relativity. 13.5. Uniform
Acceleration and Black Holes. 14. Three-Dimensional Spacetime Diagrams.
14.1. Introduction. 14.2. The Rising Manhole. 14.3. The Moving Spotlight.
14.4. The Lorentzian Inner Product. 14.5. Transverse Directions. 15.
Minkowski Area via Light Boxes. 15.1. Area in Special Relativity. 15.2.
Measuring with Light Boxes. 16. Hyperbolic Geometry. 16.1. Non-Euclidean
Geometry. 16.2. The Hyperboloid. 16.3. The Poincaré Disk. 16.4. The Klein
Disk. 16.5. The Pseudosphere. 17. Calculus. 17.1. Circle Trigonometry.
17.2. Hyperbolic Trigonometry. 17.3. Exponentials (and Logarithms).
Bibliography. Index.
The Physics of Special Relativity. 2.1. Observers and Measurement. 2.2. The
Postulates of Special Relativity. 2.3. Time Dilation and Length
Contraction. 2.4. Lorentz Transformations. 2.5. Addition of Velocities.
2.6. The Interval. 3. Circle Geometry. 3.1. The Geometry of Trigonometry.
3.2. Distance. 3.3. Circle Trigonometry. 3.4. Triangle Trigonometry. 3.5.
Rotations. 3.6. Projections. 3.7. Addition Formulas. 4. Hyperbola Geometry.
4.1. Hyperbolic Trigonometry. 4.2 Distance. 4.3. Hyperbola Trigonometry.
4.4. Triangle Trigonometry. 4.5. Rotations. 4.6. Projections. 4.7. Addition
Formulas. 4.8. Combining Circle and Hyperbola Trigonometry. 5. The Geometry
of Special Relativity. 5.1. The Surveyors. 5.2. Spacetime Diagrams. 5.3.
Lorentz Transformations. 5.4. Space and Time. 5.5. The Geometry of Lorentz
Transformations. 5.6. Dot Product. 6. Applications. 6.1. Drawing Spacetime
Diagrams. 6.2. Addition of Velocities. 6.3. Length Contraction. 6.4. Time
Dilation. 6.5. Doppler Shift. 7. Problems I. 7.1. Warmup. 7.2. Practice.
7.3. The Getaway. 7.4. Angles Are Not Invariant. 7.5. Interstellar Travel.
7.6. Observation. 7.7 Cosmic Rays. 7.8. Doppler Effect. 8. Paradoxes. 8.1.
Special Relativity Paradoxes. 8.2. The Pole and Barn Paradox. 8.3. The Twin
Paradox. 8.4. Manhole Covers. 9. Relativistic Mechanics. 9.1. Proper Time.
9.2. Velocity. 9.3. Conservation Laws. 9.4. Energy. 9.5. Useful Formulas.
9.6. Higher Dimensions. 10. Problems II. 10.1. Mass Isn't Conserved. 10.2.
Identical Particles. 10.3. Pion Decay I. 10.4. Mass and Energy. 10.5. Pion
Decay II. 11. Relativistic Electromagnetism. 11.1. Magnetism from
Electricity. 11.2. Lorentz Transformations. 11.3. Vectors. 11.4. Tensors.
11.5. The Electromagnetic Field. 11.6. Maxwell's Equations. 11.7. The
Unification of Special Relativity. 12. Problems III. 12.1. Vanishing
Fields. 12.2. Parallel and Perpendicular Fields. 13. Beyond Special
Relativity. 13.1. Problems with Special Relativity. 13.2. Tidal Effects.
13.3. Differential Geometry. 13.4. General Relativity. 13.5. Uniform
Acceleration and Black Holes. 14. Three-Dimensional Spacetime Diagrams.
14.1. Introduction. 14.2. The Rising Manhole. 14.3. The Moving Spotlight.
14.4. The Lorentzian Inner Product. 14.5. Transverse Directions. 15.
Minkowski Area via Light Boxes. 15.1. Area in Special Relativity. 15.2.
Measuring with Light Boxes. 16. Hyperbolic Geometry. 16.1. Non-Euclidean
Geometry. 16.2. The Hyperboloid. 16.3. The Poincaré Disk. 16.4. The Klein
Disk. 16.5. The Pseudosphere. 17. Calculus. 17.1. Circle Trigonometry.
17.2. Hyperbolic Trigonometry. 17.3. Exponentials (and Logarithms).
Bibliography. Index.