38,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
19 °P sammeln
  • Broschiertes Buch

The IMAGE framework allows an unsupervised learning of complex 3D objects and a recognition in cluttered scenes, under scale changes and in case of partial occlusions. Local correspondences are determined autonomously for an unordered and unlabelled training set and are used to learn the view-dependent variation of the object`s features.An exhaustive matching is avoided by a clustering of the local features. Each feature is tracked through the object`s training set giving a view-dependent feature model. This is also motivated from cognitive science that showed that human vision is able to…mehr

Produktbeschreibung
The IMAGE framework allows an unsupervised learning of complex 3D objects and a recognition in cluttered scenes, under scale changes and in case of partial occlusions. Local correspondences are determined autonomously for an unordered and unlabelled training set and are used to learn the view-dependent variation of the object`s features.An exhaustive matching is avoided by a clustering of the local features. Each feature is tracked through the object`s training set giving a view-dependent feature model. This is also motivated from cognitive science that showed that human vision is able to interpolate between views. Most existing learning approaches store a collection of training views neglecting their relations.Experiments with real objects show that the recognition performance is robust in the case of cluttered scenes, partial occlusion, in-plane rotation and scale changes. We achieve a recognition performance that is comparable to a standard SIFT approach although the IMAGE framework is able to learn unsupervised. Experiments with the Amsterdam Library of Object Images (ALOI) shows that the method also works, without any parameter change, for another set of images.
Autorenporträt
Leitner, Raimund§Raimund Leitner was born in 1975 in Kirchberg/Tyrol. He studied Telematics at the Graz University of Technology and finished his dissertation about unsupervised learning for object recognition at the Institute of Computer Graphics and Vision. Currently he is program manager for Spectral Imaging at the Carinthian Tech Research AG.