Olivier Hersent, David Boswarthick, Omar Elloumi
The Internet of Things
Key Applications and Protocols
Olivier Hersent, David Boswarthick, Omar Elloumi
The Internet of Things
Key Applications and Protocols
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An all-in-one reference to the major Home Area Networking, Building Automation and AMI protocols, including 802.15.4 over radio or PLC, 6LowPAN/RPL, ZigBee 1.0 and Smart Energy 2.0, Zwave, LON, BACNet, KNX, ModBus, mBus, C.12 and DLMS/COSEM, and the new ETSI M2M system level standard. In-depth coverage of Smart-grid and EV charging use cases.
This book describes the Home Area Networking, Building Automation and AMI protocols and their evolution towards open protocols based on IP such as 6LowPAN and ETSI M2M. The authors discuss the approach taken by service providers to interconnect the…mehr
Andere Kunden interessierten sich auch für
- Dorgham SisalemSip Security132,99 €
- Falko DresslerSelf-Organization in Sensor and Actor Networks142,99 €
- Cornelia KapplerUMTS Networks and Beyond120,99 €
- Man Young RheeWireless Mobile Internet Security136,99 €
- Markus RuppEvaluation of HSDPA to LTE153,99 €
- Cognitive Communications180,99 €
- Benny BingWireless Broadband135,99 €
-
-
-
An all-in-one reference to the major Home Area Networking, Building Automation and AMI protocols, including 802.15.4 over radio or PLC, 6LowPAN/RPL, ZigBee 1.0 and Smart Energy 2.0, Zwave, LON, BACNet, KNX, ModBus, mBus, C.12 and DLMS/COSEM, and the new ETSI M2M system level standard. In-depth coverage of Smart-grid and EV charging use cases.
This book describes the Home Area Networking, Building Automation and AMI protocols and their evolution towards open protocols based on IP such as 6LowPAN and ETSI M2M. The authors discuss the approach taken by service providers to interconnect the protocols and solve the challenge of massive scalability of machine-to-machine communication for mission-critical applications, based on the next generation machine-to-machine ETSI M2M architecture. The authors demonstrate, using the example of the smartgrid use case, how the next generation utilities, by interconnecting and activating our physical environment, will be able to deliver more energy (notably for electric vehicles) with less impact on our natural resources.
Key Features:
Offers a comprehensive overview of major existing M2M and AMI protocols Covers the system aspects of large scale M2M and smart grid applications
Focuses on system level architecture, interworking, and nationwide use cases
Explores recent emerging technologies: 6LowPAN, ZigBee SE 2.0 and ETSI M2M, and for existing technologies covers recent developments related to interworking
Relates ZigBee to the issue of smartgrid, in the more general context of carrier grade M2M applications
Illustrates the benefits of the smartgrid concept based on real examples, including business cases
This book will be a valuable guide for project managers working on smartgrid, M2M, telecommunications and utility projects, system engineers and developers, networking companies, and home automation companies. It will also be of use to senior academic researchers, students, and policy makers and regulators.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
This book describes the Home Area Networking, Building Automation and AMI protocols and their evolution towards open protocols based on IP such as 6LowPAN and ETSI M2M. The authors discuss the approach taken by service providers to interconnect the protocols and solve the challenge of massive scalability of machine-to-machine communication for mission-critical applications, based on the next generation machine-to-machine ETSI M2M architecture. The authors demonstrate, using the example of the smartgrid use case, how the next generation utilities, by interconnecting and activating our physical environment, will be able to deliver more energy (notably for electric vehicles) with less impact on our natural resources.
Key Features:
Offers a comprehensive overview of major existing M2M and AMI protocols Covers the system aspects of large scale M2M and smart grid applications
Focuses on system level architecture, interworking, and nationwide use cases
Explores recent emerging technologies: 6LowPAN, ZigBee SE 2.0 and ETSI M2M, and for existing technologies covers recent developments related to interworking
Relates ZigBee to the issue of smartgrid, in the more general context of carrier grade M2M applications
Illustrates the benefits of the smartgrid concept based on real examples, including business cases
This book will be a valuable guide for project managers working on smartgrid, M2M, telecommunications and utility projects, system engineers and developers, networking companies, and home automation companies. It will also be of use to senior academic researchers, students, and policy makers and regulators.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 2. Aufl.
- Seitenzahl: 376
- Erscheinungstermin: 6. Februar 2012
- Englisch
- Abmessung: 260mm x 177mm x 28mm
- Gewicht: 779g
- ISBN-13: 9781119994350
- ISBN-10: 1119994357
- Artikelnr.: 34450214
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley & Sons
- 2. Aufl.
- Seitenzahl: 376
- Erscheinungstermin: 6. Februar 2012
- Englisch
- Abmessung: 260mm x 177mm x 28mm
- Gewicht: 779g
- ISBN-13: 9781119994350
- ISBN-10: 1119994357
- Artikelnr.: 34450214
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Olivier Hersent, Consultant, France Olivier Hersent was the founder of NetCentrex and former CTO of Comverse Inc., and previously worked as an R&D Engineer at Orange/France Telecom. He studied finance, quantum physics and psychology at the Ecole Polytechnique from 1991-1994. Hersent is now an independent consultant. David Boswarthick, ETSI, France David has been extensively involved in the standardization activities of mobile, fixed and convergent networks in both the European Telecommunications Standards Institute (ETSI) and the 3rd Generation Partnership Project (3GPP) for over 10 years. He is currently involved in the M2M standards group which is defining an end to end architecture and requirements for multiple M2M applications including Smart Metering, healthcare and enhanced home living. David holds a Maste's Degree in Networks and Distributed systems from the University of Nice and Sophia Antipolis, France. Omar Elloumi, Alcatel-Lucent, France Omar is currently a standardization manager at Alcatel-Lucent. He received his degree in Engineering from Université de Rennes.
List of Acronyms xv
Introduction xxiii
Part I M2M AREA NETWORK PHYSICAL LAYERS
1 IEEE 802.15.4 3
1.1 The IEEE 802 Committee Family of Protocols 3
1.2 The Physical Layer 3
1.2.1 Interferences with Other Technologies 5
1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link
Quality Information 7
1.2.3 Sending a Data Frame 8
1.3 The Media-Access Control Layer 8
1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators,
and the PAN Coordinator 9
1.3.2 Association 12
1.3.3 802.15.4 Addresses 13
1.3.4 802.15.4 Frame Format 13
1.3.5 Security 14
1.4 Uses of 802.15.4 16
1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17
1.5.1 802.15.4e 17
1.5.2 802.15.4g 21
2 Powerline Communication for M2M Applications 23
2.1 Overview of PLC Technologies 23
2.2 PLC Landscape 23
2.2.1 The Historical Period (1950-2000) 24
2.2.2 After Year 2000: The Maturity of PLC 24
2.3 Powerline Communication: A Constrained Media 27
2.3.1 Powerline is a Difficult Channel 27
2.3.2 Regulation Limitations 27
2.3.3 Power Consumption 32
2.3.4 Lossy Network 33
2.3.5 Powerline is a Shared Media and Coexistence is not an Optional
Feature 35
2.4 The Ideal PLC System for M2M 37
2.4.1 Openness and Availability 38
2.4.2 Range 38
2.4.3 Power Consumption 38
2.4.4 Data Rate 39
2.4.5 Robustness 39
2.4.6 EMC Regulatory Compliance 40
2.4.7 Coexistence 40
2.4.8 Security 40
2.4.9 Latency 40
2.4.10 Interoperability with M2M Wireless Services 40
2.5 Conclusion 40
References 41
Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS,
BUILDING AUTOMATION AND HOME AUTOMATION
3 The BACnetTM Protocol 45
3.1 Standardization 45
3.1.1 United States 46
3.1.2 Europe 46
3.1.3 Interworking 46
3.2 Technology 46
3.2.1 Physical Layer 47
3.2.2 Link Layer 47
3.2.3 Network Layer 47
3.2.4 Transport and Session Layers 49
3.2.5 Presentation and Application Layers 49
3.3 BACnet Security 55
3.4 BACnet Over Web Services (Annex N, Annex H6) 55
3.4.1 The Generic WS Model 56
3.4.2 BACnet/WS Services 58
3.4.3 The Web Services Profile for BACnet Objects 59
3.4.4 Future Improvements 59
4 The LonWorks R Control Networking Platform 61
4.1 Standardization 61
4.1.1 United States of America 61
4.1.2 Europe 62
4.1.3 China 62
4.2 Technology 62
4.2.1 Physical Layer 63
4.2.2 Link Layer 64
4.2.3 Network Layer 65
4.2.4 Transport Layer 66
4.2.5 Session Layer 67
4.2.6 Presentation Layer 67
4.2.7 Application Layer 71
4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72
4.4 A REST Interface for LonWorks 73
4.4.1 LonBridge REST Transactions 74
4.4.2 Requests 74
4.4.3 Responses 75
4.4.4 LonBridge REST Resources 75
5 ModBus 79
5.1 Introduction 79
5.2 ModBus Standardization 80
5.3 ModBus Message Framing and Transmission Modes 80
5.4 ModBus/TCP 81
6 KNX 83
6.1 The Konnex/KNX Association 83
6.2 Standardization 83
6.3 KNX Technology Overview 84
6.3.1 Physical Layer 84
6.3.2 Data Link and Routing Layers, Addressing 87
6.3.3 Transport Layer 89
6.3.4 Application Layer 89
6.3.5 KNX Devices, Functional Blocks and Interworking 89
6.4 Device Configuration 92
7 ZigBee 93
7.1 Development of the Standard 93
7.2 ZigBee Architecture 94
7.2.1 ZigBee and 802.15.4 94
7.2.2 ZigBee Protocol Layers 94
7.2.3 ZigBee Node Types 96
7.3 Association 96
7.3.1 Forming a Network 96
7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97
7.3.3 Using NWK Rejoin 99
7.4 The ZigBee Network Layer 99
7.4.1 Short-Address Allocation 99
7.4.2 Network Layer Frame Format 100
7.4.3 Packet Forwarding 101
7.4.4 Routing Support Primitives 101
7.4.5 Routing Algorithms 102
7.5 The ZigBee APS Layer 105
7.5.1 Endpoints, Descriptors 106
7.5.2 The APS Frame 106
7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109
7.6.2 ZDP Network Management Services (Mandatory) 110
7.6.3 ZDP Binding Management Services (Optional) 111
7.6.4 Group Management 111
7.7 ZigBee Security 111
7.7.1 ZigBee and 802.15.4 Security 111
7.7.2 Key Types 113
7.7.3 The Trust Center 114
7.7.4 The ZDO Permissions Table 116
7.8 The ZigBee Cluster Library (ZCL) 116
7.8.1 Cluster 116
7.8.2 Attributes 117
7.8.3 Commands 117
7.8.4 ZCL Frame 117
7.9 ZigBee Application Profiles 119
7.9.1 The Home Automation (HA) Application Profile 119
7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122
7.10 The ZigBee Gateway Specification for Network Devices 129
7.10.1 The ZGD 130
7.10.2 GRIP Binding 131
7.10.3 SOAP Binding 132
7.10.4 REST Binding 132
7.10.5 Example IPHA-ZGD Interaction Using the REST Binding 134
8 Z-Wave 139
8.1 History and Management of the Protocol 139
8.2 The Z-Wave Protocol 140
8.2.1 Overview 140
8.2.2 Z-Wave Node Types 140
8.2.3 RF and MAC Layers 142
8.2.4 Transfer Layer 143
8.2.5 Routing Layer 145
8.2.6 Application Layer 148
Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING
9 M-Bus and Wireless M-Bus 155
9.1 Development of the Standard 155
9.2 M-Bus Architecture 156
9.2.1 Physical Layer 156
9.2.2 Link Layer 156
9.2.3 Network Layer 157
9.2.4 Application Layer 158
9.3 Wireless M-Bus 160
9.3.1 Physical Layer 160
9.3.2 Data-Link Layer 162
9.3.3 Application Layer 162
9.3.4 Security 163
10 The ANSI C12 Suite 165
10.1 Introduction 165
10.2 C12.19: The C12 Data Model 166
10.2.1 The Read and Write Minimum Services 167
10.2.2 Some Remarkable C12.19 Tables 167
10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168
10.4 C12.21: An Extension of C12.18 for Modem Communication 169
10.4.1 Interactions with the Data-Link Layer 170
10.4.2 Modifications and Additions to C12.19 Tables 171
10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication
System 171
10.5.1 Reference Topology and Network Elements 171
10.5.2 C12.22 Node to C12.22 Network Communications 173
10.5.3 C12.22 Device to C12.22 Communication Module Interface 174
10.5.4 C12.19 Updates 176
10.6 Other Parts of ANSI C12 Protocol Suite 176
10.7 RFC 6142: C12.22 Transport Over an IP Network 176
10.8 REST-Based Interfaces to C12.19 177
11 DLMS/COSEM 179
11.1 DLMS Standardization 179
11.1.1 The DLMS UA 179
11.1.2 DLMS/COSEM, the Colored Books 179
11.1.3 DLMS Standardization in IEC 180
11.2 The COSEM Data Model 181
11.3 The Object Identification System (OBIS) 182
11.4 The DLMS/COSEM Interface Classes 184
11.4.1 Data-Storage ICs 185
11.4.2 Association ICs 185
11.4.3 Time- and Event-Bound ICs 186
11.4.4 Communication Setup Channel Objects 186
11.5 Accessing COSEM Interface Objects 186
11.5.1 The Application Association Concept 186
11.5.2 The DLMS/COSEM Communication Framework 187
11.5.3 The Data Communication Services of COSEM Application Layer 189
11.6 End-to-End Security in the DLMS/COSEM Approach 191
11.6.1 Access Control Security 191
11.6.2 Data-Transport Security 192
Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS
12 6LoWPAN and RPL 195
12.1 Overview 195
12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195
12.3 Overview of the 6LoWPAN Adaptation Layer 196
12.3.1 Mesh Addressing Header 197
12.3.2 Fragment Header 198
12.3.3 IPv6 Compression Header 198
12.4 Context-Based Compression: IPHC 200
12.5 RPL 202
12.5.1 RPL Control Messages 204
12.5.2 Construction of the DODAG and Upward Routes 204
12.6 Downward Routes, Multicast Membership 206
12.7 Packet Routing 207
12.7.1 RPL Security 208
13 ZigBee Smart Energy 2.0 209
13.1 REST Overview 209
13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209
13.1.2 REST Verbs 210
13.1.3 Other REST Constraints, and What is REST After All? 211
13.2 ZigBee SEP 2.0 Overview 212
13.2.1 ZigBee IP 213
13.2.2 ZigBee SEP 2.0 Resources 214
13.3 Function Sets and Device Types 217
13.3.1 Base Function Set 218
13.3.2 Group Enrollment 221
13.3.3 Meter 223
13.3.4 Pricing 223
13.3.5 Demand Response and Load Control Function Set 224
13.3.6 Distributed Energy Resources 227
13.3.7 Plug-In Electric Vehicle 227
13.3.8 Messaging 230
13.3.9 Registration 231
13.4 ZigBee SE 2.0 Security 232
13.4.1 Certificates 232
13.4.2 IP Level Security 232
13.4.3 Application-Level Security 235
14 The ETSI M2M Architecture 237
14.1 Introduction to ETSI TC M2M 237
14.2 System Architecture 238
14.2.1 High-Level Architecture 238
14.2.2 Reference Points 239
14.2.3 Service Capabilities 240
14.3 ETSI M2M SCL Resource Structure 242
14.3.1 SCL Resources 244
14.3.2 Application Resources 244
14.3.3 Access Right Resources 248
14.3.4 Container Resources 248
14.3.5 Group Resources 250
14.3.6 Subscription and Notification Channel Resources 251
14.4 ETSI M2M Interactions Overview 252
14.5 Security in the ETSI M2M Framework 252
14.5.1 Key Management 252
14.5.2 Access Lists 254
14.6 Interworking with Machine Area Networks 255
14.6.1 Mapping M2M Networks to ETSI M2M Resources 256
14.6.2 Interworking with ZigBee 1.0 257
14.6.3 Interworking with C.12 262
14.6.4 Interworking with DLMS/COSEM 264
14.7 Conclusion on ETSI M2M 266
Part V KEY APPLICATIONS OF THE INTERNET OF THINGS
15 The Smart Grid 271
15.1 Introduction 271
15.2 The Marginal Cost of Electricity: Base and Peak Production 272
15.3 Managing Demand: The Next Challenge of Electricity Operators . . .
and
Why M2M Will Become a Key Technology 273
15.4 Demand Response for Transmission System Operators (TSO) 274
15.4.1 Grid-Balancing Authorities: The TSOs 274
15.4.2 Power Shedding: Who Pays What? 276
15.4.3 Automated Demand Response 277
15.5 Case Study: RTE in France 277
15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France
277
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281
15.5.3 Who Pays for the Network-Balancing Costs? 283
15.6 The Opportunity of Smart Distributed Energy Management 285
15.6.1 Assessing the Potential of Residential and Small-Business Powerz
Shedding (Heating/Cooling Control) 286
15.6.2 Analysis of a Typical Home 287
15.6.3 The Business Case 293
15.7 Demand Response: The Big Picture 300
15.7.1 From Network Balancing to Peak-Demand Suppression 300
15.7.2 Demand Response Beyond Heating Systems 304
15.8 Conclusion: The Business Case of Demand Response and Demand Shifting
is a Key Driver for the Deployment of the Internet of Things 305
16 Electric Vehicle Charging 307
16.1 Charging Standards Overview 307
16.1.1 IEC Standards Related to EV Charging 310
16.1.2 SAE Standards 317
16.1.3 J2293 318
16.1.4 CAN - Bus 319
16.1.5 J2847: The New "Recommended Practice" for High-Level
Communication Leveraging the ZigBee Smart Energy Profile 2.0 320
16.2 Use Cases 321
16.2.1 Basic Use Cases 321
16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323
16.3 Conclusion 324
Appendix A Normal Aggregate Power Demand of a Set of Identical
Heating Systems with Hysteresis 327
Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329
Appendix C Changing Tref without Introducing Correlation 331
C.1 Effect of an Increase of Tref 331
Appendix D Lower Consumption, A Side Benefit of Power Shedding 333
Index 337
Introduction xxiii
Part I M2M AREA NETWORK PHYSICAL LAYERS
1 IEEE 802.15.4 3
1.1 The IEEE 802 Committee Family of Protocols 3
1.2 The Physical Layer 3
1.2.1 Interferences with Other Technologies 5
1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link
Quality Information 7
1.2.3 Sending a Data Frame 8
1.3 The Media-Access Control Layer 8
1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators,
and the PAN Coordinator 9
1.3.2 Association 12
1.3.3 802.15.4 Addresses 13
1.3.4 802.15.4 Frame Format 13
1.3.5 Security 14
1.4 Uses of 802.15.4 16
1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17
1.5.1 802.15.4e 17
1.5.2 802.15.4g 21
2 Powerline Communication for M2M Applications 23
2.1 Overview of PLC Technologies 23
2.2 PLC Landscape 23
2.2.1 The Historical Period (1950-2000) 24
2.2.2 After Year 2000: The Maturity of PLC 24
2.3 Powerline Communication: A Constrained Media 27
2.3.1 Powerline is a Difficult Channel 27
2.3.2 Regulation Limitations 27
2.3.3 Power Consumption 32
2.3.4 Lossy Network 33
2.3.5 Powerline is a Shared Media and Coexistence is not an Optional
Feature 35
2.4 The Ideal PLC System for M2M 37
2.4.1 Openness and Availability 38
2.4.2 Range 38
2.4.3 Power Consumption 38
2.4.4 Data Rate 39
2.4.5 Robustness 39
2.4.6 EMC Regulatory Compliance 40
2.4.7 Coexistence 40
2.4.8 Security 40
2.4.9 Latency 40
2.4.10 Interoperability with M2M Wireless Services 40
2.5 Conclusion 40
References 41
Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS,
BUILDING AUTOMATION AND HOME AUTOMATION
3 The BACnetTM Protocol 45
3.1 Standardization 45
3.1.1 United States 46
3.1.2 Europe 46
3.1.3 Interworking 46
3.2 Technology 46
3.2.1 Physical Layer 47
3.2.2 Link Layer 47
3.2.3 Network Layer 47
3.2.4 Transport and Session Layers 49
3.2.5 Presentation and Application Layers 49
3.3 BACnet Security 55
3.4 BACnet Over Web Services (Annex N, Annex H6) 55
3.4.1 The Generic WS Model 56
3.4.2 BACnet/WS Services 58
3.4.3 The Web Services Profile for BACnet Objects 59
3.4.4 Future Improvements 59
4 The LonWorks R Control Networking Platform 61
4.1 Standardization 61
4.1.1 United States of America 61
4.1.2 Europe 62
4.1.3 China 62
4.2 Technology 62
4.2.1 Physical Layer 63
4.2.2 Link Layer 64
4.2.3 Network Layer 65
4.2.4 Transport Layer 66
4.2.5 Session Layer 67
4.2.6 Presentation Layer 67
4.2.7 Application Layer 71
4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72
4.4 A REST Interface for LonWorks 73
4.4.1 LonBridge REST Transactions 74
4.4.2 Requests 74
4.4.3 Responses 75
4.4.4 LonBridge REST Resources 75
5 ModBus 79
5.1 Introduction 79
5.2 ModBus Standardization 80
5.3 ModBus Message Framing and Transmission Modes 80
5.4 ModBus/TCP 81
6 KNX 83
6.1 The Konnex/KNX Association 83
6.2 Standardization 83
6.3 KNX Technology Overview 84
6.3.1 Physical Layer 84
6.3.2 Data Link and Routing Layers, Addressing 87
6.3.3 Transport Layer 89
6.3.4 Application Layer 89
6.3.5 KNX Devices, Functional Blocks and Interworking 89
6.4 Device Configuration 92
7 ZigBee 93
7.1 Development of the Standard 93
7.2 ZigBee Architecture 94
7.2.1 ZigBee and 802.15.4 94
7.2.2 ZigBee Protocol Layers 94
7.2.3 ZigBee Node Types 96
7.3 Association 96
7.3.1 Forming a Network 96
7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97
7.3.3 Using NWK Rejoin 99
7.4 The ZigBee Network Layer 99
7.4.1 Short-Address Allocation 99
7.4.2 Network Layer Frame Format 100
7.4.3 Packet Forwarding 101
7.4.4 Routing Support Primitives 101
7.4.5 Routing Algorithms 102
7.5 The ZigBee APS Layer 105
7.5.1 Endpoints, Descriptors 106
7.5.2 The APS Frame 106
7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109
7.6.2 ZDP Network Management Services (Mandatory) 110
7.6.3 ZDP Binding Management Services (Optional) 111
7.6.4 Group Management 111
7.7 ZigBee Security 111
7.7.1 ZigBee and 802.15.4 Security 111
7.7.2 Key Types 113
7.7.3 The Trust Center 114
7.7.4 The ZDO Permissions Table 116
7.8 The ZigBee Cluster Library (ZCL) 116
7.8.1 Cluster 116
7.8.2 Attributes 117
7.8.3 Commands 117
7.8.4 ZCL Frame 117
7.9 ZigBee Application Profiles 119
7.9.1 The Home Automation (HA) Application Profile 119
7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122
7.10 The ZigBee Gateway Specification for Network Devices 129
7.10.1 The ZGD 130
7.10.2 GRIP Binding 131
7.10.3 SOAP Binding 132
7.10.4 REST Binding 132
7.10.5 Example IPHA-ZGD Interaction Using the REST Binding 134
8 Z-Wave 139
8.1 History and Management of the Protocol 139
8.2 The Z-Wave Protocol 140
8.2.1 Overview 140
8.2.2 Z-Wave Node Types 140
8.2.3 RF and MAC Layers 142
8.2.4 Transfer Layer 143
8.2.5 Routing Layer 145
8.2.6 Application Layer 148
Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING
9 M-Bus and Wireless M-Bus 155
9.1 Development of the Standard 155
9.2 M-Bus Architecture 156
9.2.1 Physical Layer 156
9.2.2 Link Layer 156
9.2.3 Network Layer 157
9.2.4 Application Layer 158
9.3 Wireless M-Bus 160
9.3.1 Physical Layer 160
9.3.2 Data-Link Layer 162
9.3.3 Application Layer 162
9.3.4 Security 163
10 The ANSI C12 Suite 165
10.1 Introduction 165
10.2 C12.19: The C12 Data Model 166
10.2.1 The Read and Write Minimum Services 167
10.2.2 Some Remarkable C12.19 Tables 167
10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168
10.4 C12.21: An Extension of C12.18 for Modem Communication 169
10.4.1 Interactions with the Data-Link Layer 170
10.4.2 Modifications and Additions to C12.19 Tables 171
10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication
System 171
10.5.1 Reference Topology and Network Elements 171
10.5.2 C12.22 Node to C12.22 Network Communications 173
10.5.3 C12.22 Device to C12.22 Communication Module Interface 174
10.5.4 C12.19 Updates 176
10.6 Other Parts of ANSI C12 Protocol Suite 176
10.7 RFC 6142: C12.22 Transport Over an IP Network 176
10.8 REST-Based Interfaces to C12.19 177
11 DLMS/COSEM 179
11.1 DLMS Standardization 179
11.1.1 The DLMS UA 179
11.1.2 DLMS/COSEM, the Colored Books 179
11.1.3 DLMS Standardization in IEC 180
11.2 The COSEM Data Model 181
11.3 The Object Identification System (OBIS) 182
11.4 The DLMS/COSEM Interface Classes 184
11.4.1 Data-Storage ICs 185
11.4.2 Association ICs 185
11.4.3 Time- and Event-Bound ICs 186
11.4.4 Communication Setup Channel Objects 186
11.5 Accessing COSEM Interface Objects 186
11.5.1 The Application Association Concept 186
11.5.2 The DLMS/COSEM Communication Framework 187
11.5.3 The Data Communication Services of COSEM Application Layer 189
11.6 End-to-End Security in the DLMS/COSEM Approach 191
11.6.1 Access Control Security 191
11.6.2 Data-Transport Security 192
Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS
12 6LoWPAN and RPL 195
12.1 Overview 195
12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195
12.3 Overview of the 6LoWPAN Adaptation Layer 196
12.3.1 Mesh Addressing Header 197
12.3.2 Fragment Header 198
12.3.3 IPv6 Compression Header 198
12.4 Context-Based Compression: IPHC 200
12.5 RPL 202
12.5.1 RPL Control Messages 204
12.5.2 Construction of the DODAG and Upward Routes 204
12.6 Downward Routes, Multicast Membership 206
12.7 Packet Routing 207
12.7.1 RPL Security 208
13 ZigBee Smart Energy 2.0 209
13.1 REST Overview 209
13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209
13.1.2 REST Verbs 210
13.1.3 Other REST Constraints, and What is REST After All? 211
13.2 ZigBee SEP 2.0 Overview 212
13.2.1 ZigBee IP 213
13.2.2 ZigBee SEP 2.0 Resources 214
13.3 Function Sets and Device Types 217
13.3.1 Base Function Set 218
13.3.2 Group Enrollment 221
13.3.3 Meter 223
13.3.4 Pricing 223
13.3.5 Demand Response and Load Control Function Set 224
13.3.6 Distributed Energy Resources 227
13.3.7 Plug-In Electric Vehicle 227
13.3.8 Messaging 230
13.3.9 Registration 231
13.4 ZigBee SE 2.0 Security 232
13.4.1 Certificates 232
13.4.2 IP Level Security 232
13.4.3 Application-Level Security 235
14 The ETSI M2M Architecture 237
14.1 Introduction to ETSI TC M2M 237
14.2 System Architecture 238
14.2.1 High-Level Architecture 238
14.2.2 Reference Points 239
14.2.3 Service Capabilities 240
14.3 ETSI M2M SCL Resource Structure 242
14.3.1 SCL Resources 244
14.3.2 Application Resources 244
14.3.3 Access Right Resources 248
14.3.4 Container Resources 248
14.3.5 Group Resources 250
14.3.6 Subscription and Notification Channel Resources 251
14.4 ETSI M2M Interactions Overview 252
14.5 Security in the ETSI M2M Framework 252
14.5.1 Key Management 252
14.5.2 Access Lists 254
14.6 Interworking with Machine Area Networks 255
14.6.1 Mapping M2M Networks to ETSI M2M Resources 256
14.6.2 Interworking with ZigBee 1.0 257
14.6.3 Interworking with C.12 262
14.6.4 Interworking with DLMS/COSEM 264
14.7 Conclusion on ETSI M2M 266
Part V KEY APPLICATIONS OF THE INTERNET OF THINGS
15 The Smart Grid 271
15.1 Introduction 271
15.2 The Marginal Cost of Electricity: Base and Peak Production 272
15.3 Managing Demand: The Next Challenge of Electricity Operators . . .
and
Why M2M Will Become a Key Technology 273
15.4 Demand Response for Transmission System Operators (TSO) 274
15.4.1 Grid-Balancing Authorities: The TSOs 274
15.4.2 Power Shedding: Who Pays What? 276
15.4.3 Automated Demand Response 277
15.5 Case Study: RTE in France 277
15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France
277
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281
15.5.3 Who Pays for the Network-Balancing Costs? 283
15.6 The Opportunity of Smart Distributed Energy Management 285
15.6.1 Assessing the Potential of Residential and Small-Business Powerz
Shedding (Heating/Cooling Control) 286
15.6.2 Analysis of a Typical Home 287
15.6.3 The Business Case 293
15.7 Demand Response: The Big Picture 300
15.7.1 From Network Balancing to Peak-Demand Suppression 300
15.7.2 Demand Response Beyond Heating Systems 304
15.8 Conclusion: The Business Case of Demand Response and Demand Shifting
is a Key Driver for the Deployment of the Internet of Things 305
16 Electric Vehicle Charging 307
16.1 Charging Standards Overview 307
16.1.1 IEC Standards Related to EV Charging 310
16.1.2 SAE Standards 317
16.1.3 J2293 318
16.1.4 CAN - Bus 319
16.1.5 J2847: The New "Recommended Practice" for High-Level
Communication Leveraging the ZigBee Smart Energy Profile 2.0 320
16.2 Use Cases 321
16.2.1 Basic Use Cases 321
16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323
16.3 Conclusion 324
Appendix A Normal Aggregate Power Demand of a Set of Identical
Heating Systems with Hysteresis 327
Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329
Appendix C Changing Tref without Introducing Correlation 331
C.1 Effect of an Increase of Tref 331
Appendix D Lower Consumption, A Side Benefit of Power Shedding 333
Index 337
List of Acronyms xv
Introduction xxiii
Part I M2M AREA NETWORK PHYSICAL LAYERS
1 IEEE 802.15.4 3
1.1 The IEEE 802 Committee Family of Protocols 3
1.2 The Physical Layer 3
1.2.1 Interferences with Other Technologies 5
1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link
Quality Information 7
1.2.3 Sending a Data Frame 8
1.3 The Media-Access Control Layer 8
1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators,
and the PAN Coordinator 9
1.3.2 Association 12
1.3.3 802.15.4 Addresses 13
1.3.4 802.15.4 Frame Format 13
1.3.5 Security 14
1.4 Uses of 802.15.4 16
1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17
1.5.1 802.15.4e 17
1.5.2 802.15.4g 21
2 Powerline Communication for M2M Applications 23
2.1 Overview of PLC Technologies 23
2.2 PLC Landscape 23
2.2.1 The Historical Period (1950-2000) 24
2.2.2 After Year 2000: The Maturity of PLC 24
2.3 Powerline Communication: A Constrained Media 27
2.3.1 Powerline is a Difficult Channel 27
2.3.2 Regulation Limitations 27
2.3.3 Power Consumption 32
2.3.4 Lossy Network 33
2.3.5 Powerline is a Shared Media and Coexistence is not an Optional
Feature 35
2.4 The Ideal PLC System for M2M 37
2.4.1 Openness and Availability 38
2.4.2 Range 38
2.4.3 Power Consumption 38
2.4.4 Data Rate 39
2.4.5 Robustness 39
2.4.6 EMC Regulatory Compliance 40
2.4.7 Coexistence 40
2.4.8 Security 40
2.4.9 Latency 40
2.4.10 Interoperability with M2M Wireless Services 40
2.5 Conclusion 40
References 41
Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS,
BUILDING AUTOMATION AND HOME AUTOMATION
3 The BACnetTM Protocol 45
3.1 Standardization 45
3.1.1 United States 46
3.1.2 Europe 46
3.1.3 Interworking 46
3.2 Technology 46
3.2.1 Physical Layer 47
3.2.2 Link Layer 47
3.2.3 Network Layer 47
3.2.4 Transport and Session Layers 49
3.2.5 Presentation and Application Layers 49
3.3 BACnet Security 55
3.4 BACnet Over Web Services (Annex N, Annex H6) 55
3.4.1 The Generic WS Model 56
3.4.2 BACnet/WS Services 58
3.4.3 The Web Services Profile for BACnet Objects 59
3.4.4 Future Improvements 59
4 The LonWorks R Control Networking Platform 61
4.1 Standardization 61
4.1.1 United States of America 61
4.1.2 Europe 62
4.1.3 China 62
4.2 Technology 62
4.2.1 Physical Layer 63
4.2.2 Link Layer 64
4.2.3 Network Layer 65
4.2.4 Transport Layer 66
4.2.5 Session Layer 67
4.2.6 Presentation Layer 67
4.2.7 Application Layer 71
4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72
4.4 A REST Interface for LonWorks 73
4.4.1 LonBridge REST Transactions 74
4.4.2 Requests 74
4.4.3 Responses 75
4.4.4 LonBridge REST Resources 75
5 ModBus 79
5.1 Introduction 79
5.2 ModBus Standardization 80
5.3 ModBus Message Framing and Transmission Modes 80
5.4 ModBus/TCP 81
6 KNX 83
6.1 The Konnex/KNX Association 83
6.2 Standardization 83
6.3 KNX Technology Overview 84
6.3.1 Physical Layer 84
6.3.2 Data Link and Routing Layers, Addressing 87
6.3.3 Transport Layer 89
6.3.4 Application Layer 89
6.3.5 KNX Devices, Functional Blocks and Interworking 89
6.4 Device Configuration 92
7 ZigBee 93
7.1 Development of the Standard 93
7.2 ZigBee Architecture 94
7.2.1 ZigBee and 802.15.4 94
7.2.2 ZigBee Protocol Layers 94
7.2.3 ZigBee Node Types 96
7.3 Association 96
7.3.1 Forming a Network 96
7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97
7.3.3 Using NWK Rejoin 99
7.4 The ZigBee Network Layer 99
7.4.1 Short-Address Allocation 99
7.4.2 Network Layer Frame Format 100
7.4.3 Packet Forwarding 101
7.4.4 Routing Support Primitives 101
7.4.5 Routing Algorithms 102
7.5 The ZigBee APS Layer 105
7.5.1 Endpoints, Descriptors 106
7.5.2 The APS Frame 106
7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109
7.6.2 ZDP Network Management Services (Mandatory) 110
7.6.3 ZDP Binding Management Services (Optional) 111
7.6.4 Group Management 111
7.7 ZigBee Security 111
7.7.1 ZigBee and 802.15.4 Security 111
7.7.2 Key Types 113
7.7.3 The Trust Center 114
7.7.4 The ZDO Permissions Table 116
7.8 The ZigBee Cluster Library (ZCL) 116
7.8.1 Cluster 116
7.8.2 Attributes 117
7.8.3 Commands 117
7.8.4 ZCL Frame 117
7.9 ZigBee Application Profiles 119
7.9.1 The Home Automation (HA) Application Profile 119
7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122
7.10 The ZigBee Gateway Specification for Network Devices 129
7.10.1 The ZGD 130
7.10.2 GRIP Binding 131
7.10.3 SOAP Binding 132
7.10.4 REST Binding 132
7.10.5 Example IPHA-ZGD Interaction Using the REST Binding 134
8 Z-Wave 139
8.1 History and Management of the Protocol 139
8.2 The Z-Wave Protocol 140
8.2.1 Overview 140
8.2.2 Z-Wave Node Types 140
8.2.3 RF and MAC Layers 142
8.2.4 Transfer Layer 143
8.2.5 Routing Layer 145
8.2.6 Application Layer 148
Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING
9 M-Bus and Wireless M-Bus 155
9.1 Development of the Standard 155
9.2 M-Bus Architecture 156
9.2.1 Physical Layer 156
9.2.2 Link Layer 156
9.2.3 Network Layer 157
9.2.4 Application Layer 158
9.3 Wireless M-Bus 160
9.3.1 Physical Layer 160
9.3.2 Data-Link Layer 162
9.3.3 Application Layer 162
9.3.4 Security 163
10 The ANSI C12 Suite 165
10.1 Introduction 165
10.2 C12.19: The C12 Data Model 166
10.2.1 The Read and Write Minimum Services 167
10.2.2 Some Remarkable C12.19 Tables 167
10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168
10.4 C12.21: An Extension of C12.18 for Modem Communication 169
10.4.1 Interactions with the Data-Link Layer 170
10.4.2 Modifications and Additions to C12.19 Tables 171
10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication
System 171
10.5.1 Reference Topology and Network Elements 171
10.5.2 C12.22 Node to C12.22 Network Communications 173
10.5.3 C12.22 Device to C12.22 Communication Module Interface 174
10.5.4 C12.19 Updates 176
10.6 Other Parts of ANSI C12 Protocol Suite 176
10.7 RFC 6142: C12.22 Transport Over an IP Network 176
10.8 REST-Based Interfaces to C12.19 177
11 DLMS/COSEM 179
11.1 DLMS Standardization 179
11.1.1 The DLMS UA 179
11.1.2 DLMS/COSEM, the Colored Books 179
11.1.3 DLMS Standardization in IEC 180
11.2 The COSEM Data Model 181
11.3 The Object Identification System (OBIS) 182
11.4 The DLMS/COSEM Interface Classes 184
11.4.1 Data-Storage ICs 185
11.4.2 Association ICs 185
11.4.3 Time- and Event-Bound ICs 186
11.4.4 Communication Setup Channel Objects 186
11.5 Accessing COSEM Interface Objects 186
11.5.1 The Application Association Concept 186
11.5.2 The DLMS/COSEM Communication Framework 187
11.5.3 The Data Communication Services of COSEM Application Layer 189
11.6 End-to-End Security in the DLMS/COSEM Approach 191
11.6.1 Access Control Security 191
11.6.2 Data-Transport Security 192
Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS
12 6LoWPAN and RPL 195
12.1 Overview 195
12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195
12.3 Overview of the 6LoWPAN Adaptation Layer 196
12.3.1 Mesh Addressing Header 197
12.3.2 Fragment Header 198
12.3.3 IPv6 Compression Header 198
12.4 Context-Based Compression: IPHC 200
12.5 RPL 202
12.5.1 RPL Control Messages 204
12.5.2 Construction of the DODAG and Upward Routes 204
12.6 Downward Routes, Multicast Membership 206
12.7 Packet Routing 207
12.7.1 RPL Security 208
13 ZigBee Smart Energy 2.0 209
13.1 REST Overview 209
13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209
13.1.2 REST Verbs 210
13.1.3 Other REST Constraints, and What is REST After All? 211
13.2 ZigBee SEP 2.0 Overview 212
13.2.1 ZigBee IP 213
13.2.2 ZigBee SEP 2.0 Resources 214
13.3 Function Sets and Device Types 217
13.3.1 Base Function Set 218
13.3.2 Group Enrollment 221
13.3.3 Meter 223
13.3.4 Pricing 223
13.3.5 Demand Response and Load Control Function Set 224
13.3.6 Distributed Energy Resources 227
13.3.7 Plug-In Electric Vehicle 227
13.3.8 Messaging 230
13.3.9 Registration 231
13.4 ZigBee SE 2.0 Security 232
13.4.1 Certificates 232
13.4.2 IP Level Security 232
13.4.3 Application-Level Security 235
14 The ETSI M2M Architecture 237
14.1 Introduction to ETSI TC M2M 237
14.2 System Architecture 238
14.2.1 High-Level Architecture 238
14.2.2 Reference Points 239
14.2.3 Service Capabilities 240
14.3 ETSI M2M SCL Resource Structure 242
14.3.1 SCL Resources 244
14.3.2 Application Resources 244
14.3.3 Access Right Resources 248
14.3.4 Container Resources 248
14.3.5 Group Resources 250
14.3.6 Subscription and Notification Channel Resources 251
14.4 ETSI M2M Interactions Overview 252
14.5 Security in the ETSI M2M Framework 252
14.5.1 Key Management 252
14.5.2 Access Lists 254
14.6 Interworking with Machine Area Networks 255
14.6.1 Mapping M2M Networks to ETSI M2M Resources 256
14.6.2 Interworking with ZigBee 1.0 257
14.6.3 Interworking with C.12 262
14.6.4 Interworking with DLMS/COSEM 264
14.7 Conclusion on ETSI M2M 266
Part V KEY APPLICATIONS OF THE INTERNET OF THINGS
15 The Smart Grid 271
15.1 Introduction 271
15.2 The Marginal Cost of Electricity: Base and Peak Production 272
15.3 Managing Demand: The Next Challenge of Electricity Operators . . .
and
Why M2M Will Become a Key Technology 273
15.4 Demand Response for Transmission System Operators (TSO) 274
15.4.1 Grid-Balancing Authorities: The TSOs 274
15.4.2 Power Shedding: Who Pays What? 276
15.4.3 Automated Demand Response 277
15.5 Case Study: RTE in France 277
15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France
277
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281
15.5.3 Who Pays for the Network-Balancing Costs? 283
15.6 The Opportunity of Smart Distributed Energy Management 285
15.6.1 Assessing the Potential of Residential and Small-Business Powerz
Shedding (Heating/Cooling Control) 286
15.6.2 Analysis of a Typical Home 287
15.6.3 The Business Case 293
15.7 Demand Response: The Big Picture 300
15.7.1 From Network Balancing to Peak-Demand Suppression 300
15.7.2 Demand Response Beyond Heating Systems 304
15.8 Conclusion: The Business Case of Demand Response and Demand Shifting
is a Key Driver for the Deployment of the Internet of Things 305
16 Electric Vehicle Charging 307
16.1 Charging Standards Overview 307
16.1.1 IEC Standards Related to EV Charging 310
16.1.2 SAE Standards 317
16.1.3 J2293 318
16.1.4 CAN - Bus 319
16.1.5 J2847: The New "Recommended Practice" for High-Level
Communication Leveraging the ZigBee Smart Energy Profile 2.0 320
16.2 Use Cases 321
16.2.1 Basic Use Cases 321
16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323
16.3 Conclusion 324
Appendix A Normal Aggregate Power Demand of a Set of Identical
Heating Systems with Hysteresis 327
Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329
Appendix C Changing Tref without Introducing Correlation 331
C.1 Effect of an Increase of Tref 331
Appendix D Lower Consumption, A Side Benefit of Power Shedding 333
Index 337
Introduction xxiii
Part I M2M AREA NETWORK PHYSICAL LAYERS
1 IEEE 802.15.4 3
1.1 The IEEE 802 Committee Family of Protocols 3
1.2 The Physical Layer 3
1.2.1 Interferences with Other Technologies 5
1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link
Quality Information 7
1.2.3 Sending a Data Frame 8
1.3 The Media-Access Control Layer 8
1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators,
and the PAN Coordinator 9
1.3.2 Association 12
1.3.3 802.15.4 Addresses 13
1.3.4 802.15.4 Frame Format 13
1.3.5 Security 14
1.4 Uses of 802.15.4 16
1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17
1.5.1 802.15.4e 17
1.5.2 802.15.4g 21
2 Powerline Communication for M2M Applications 23
2.1 Overview of PLC Technologies 23
2.2 PLC Landscape 23
2.2.1 The Historical Period (1950-2000) 24
2.2.2 After Year 2000: The Maturity of PLC 24
2.3 Powerline Communication: A Constrained Media 27
2.3.1 Powerline is a Difficult Channel 27
2.3.2 Regulation Limitations 27
2.3.3 Power Consumption 32
2.3.4 Lossy Network 33
2.3.5 Powerline is a Shared Media and Coexistence is not an Optional
Feature 35
2.4 The Ideal PLC System for M2M 37
2.4.1 Openness and Availability 38
2.4.2 Range 38
2.4.3 Power Consumption 38
2.4.4 Data Rate 39
2.4.5 Robustness 39
2.4.6 EMC Regulatory Compliance 40
2.4.7 Coexistence 40
2.4.8 Security 40
2.4.9 Latency 40
2.4.10 Interoperability with M2M Wireless Services 40
2.5 Conclusion 40
References 41
Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS,
BUILDING AUTOMATION AND HOME AUTOMATION
3 The BACnetTM Protocol 45
3.1 Standardization 45
3.1.1 United States 46
3.1.2 Europe 46
3.1.3 Interworking 46
3.2 Technology 46
3.2.1 Physical Layer 47
3.2.2 Link Layer 47
3.2.3 Network Layer 47
3.2.4 Transport and Session Layers 49
3.2.5 Presentation and Application Layers 49
3.3 BACnet Security 55
3.4 BACnet Over Web Services (Annex N, Annex H6) 55
3.4.1 The Generic WS Model 56
3.4.2 BACnet/WS Services 58
3.4.3 The Web Services Profile for BACnet Objects 59
3.4.4 Future Improvements 59
4 The LonWorks R Control Networking Platform 61
4.1 Standardization 61
4.1.1 United States of America 61
4.1.2 Europe 62
4.1.3 China 62
4.2 Technology 62
4.2.1 Physical Layer 63
4.2.2 Link Layer 64
4.2.3 Network Layer 65
4.2.4 Transport Layer 66
4.2.5 Session Layer 67
4.2.6 Presentation Layer 67
4.2.7 Application Layer 71
4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72
4.4 A REST Interface for LonWorks 73
4.4.1 LonBridge REST Transactions 74
4.4.2 Requests 74
4.4.3 Responses 75
4.4.4 LonBridge REST Resources 75
5 ModBus 79
5.1 Introduction 79
5.2 ModBus Standardization 80
5.3 ModBus Message Framing and Transmission Modes 80
5.4 ModBus/TCP 81
6 KNX 83
6.1 The Konnex/KNX Association 83
6.2 Standardization 83
6.3 KNX Technology Overview 84
6.3.1 Physical Layer 84
6.3.2 Data Link and Routing Layers, Addressing 87
6.3.3 Transport Layer 89
6.3.4 Application Layer 89
6.3.5 KNX Devices, Functional Blocks and Interworking 89
6.4 Device Configuration 92
7 ZigBee 93
7.1 Development of the Standard 93
7.2 ZigBee Architecture 94
7.2.1 ZigBee and 802.15.4 94
7.2.2 ZigBee Protocol Layers 94
7.2.3 ZigBee Node Types 96
7.3 Association 96
7.3.1 Forming a Network 96
7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97
7.3.3 Using NWK Rejoin 99
7.4 The ZigBee Network Layer 99
7.4.1 Short-Address Allocation 99
7.4.2 Network Layer Frame Format 100
7.4.3 Packet Forwarding 101
7.4.4 Routing Support Primitives 101
7.4.5 Routing Algorithms 102
7.5 The ZigBee APS Layer 105
7.5.1 Endpoints, Descriptors 106
7.5.2 The APS Frame 106
7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109
7.6.2 ZDP Network Management Services (Mandatory) 110
7.6.3 ZDP Binding Management Services (Optional) 111
7.6.4 Group Management 111
7.7 ZigBee Security 111
7.7.1 ZigBee and 802.15.4 Security 111
7.7.2 Key Types 113
7.7.3 The Trust Center 114
7.7.4 The ZDO Permissions Table 116
7.8 The ZigBee Cluster Library (ZCL) 116
7.8.1 Cluster 116
7.8.2 Attributes 117
7.8.3 Commands 117
7.8.4 ZCL Frame 117
7.9 ZigBee Application Profiles 119
7.9.1 The Home Automation (HA) Application Profile 119
7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122
7.10 The ZigBee Gateway Specification for Network Devices 129
7.10.1 The ZGD 130
7.10.2 GRIP Binding 131
7.10.3 SOAP Binding 132
7.10.4 REST Binding 132
7.10.5 Example IPHA-ZGD Interaction Using the REST Binding 134
8 Z-Wave 139
8.1 History and Management of the Protocol 139
8.2 The Z-Wave Protocol 140
8.2.1 Overview 140
8.2.2 Z-Wave Node Types 140
8.2.3 RF and MAC Layers 142
8.2.4 Transfer Layer 143
8.2.5 Routing Layer 145
8.2.6 Application Layer 148
Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING
9 M-Bus and Wireless M-Bus 155
9.1 Development of the Standard 155
9.2 M-Bus Architecture 156
9.2.1 Physical Layer 156
9.2.2 Link Layer 156
9.2.3 Network Layer 157
9.2.4 Application Layer 158
9.3 Wireless M-Bus 160
9.3.1 Physical Layer 160
9.3.2 Data-Link Layer 162
9.3.3 Application Layer 162
9.3.4 Security 163
10 The ANSI C12 Suite 165
10.1 Introduction 165
10.2 C12.19: The C12 Data Model 166
10.2.1 The Read and Write Minimum Services 167
10.2.2 Some Remarkable C12.19 Tables 167
10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168
10.4 C12.21: An Extension of C12.18 for Modem Communication 169
10.4.1 Interactions with the Data-Link Layer 170
10.4.2 Modifications and Additions to C12.19 Tables 171
10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication
System 171
10.5.1 Reference Topology and Network Elements 171
10.5.2 C12.22 Node to C12.22 Network Communications 173
10.5.3 C12.22 Device to C12.22 Communication Module Interface 174
10.5.4 C12.19 Updates 176
10.6 Other Parts of ANSI C12 Protocol Suite 176
10.7 RFC 6142: C12.22 Transport Over an IP Network 176
10.8 REST-Based Interfaces to C12.19 177
11 DLMS/COSEM 179
11.1 DLMS Standardization 179
11.1.1 The DLMS UA 179
11.1.2 DLMS/COSEM, the Colored Books 179
11.1.3 DLMS Standardization in IEC 180
11.2 The COSEM Data Model 181
11.3 The Object Identification System (OBIS) 182
11.4 The DLMS/COSEM Interface Classes 184
11.4.1 Data-Storage ICs 185
11.4.2 Association ICs 185
11.4.3 Time- and Event-Bound ICs 186
11.4.4 Communication Setup Channel Objects 186
11.5 Accessing COSEM Interface Objects 186
11.5.1 The Application Association Concept 186
11.5.2 The DLMS/COSEM Communication Framework 187
11.5.3 The Data Communication Services of COSEM Application Layer 189
11.6 End-to-End Security in the DLMS/COSEM Approach 191
11.6.1 Access Control Security 191
11.6.2 Data-Transport Security 192
Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS
12 6LoWPAN and RPL 195
12.1 Overview 195
12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195
12.3 Overview of the 6LoWPAN Adaptation Layer 196
12.3.1 Mesh Addressing Header 197
12.3.2 Fragment Header 198
12.3.3 IPv6 Compression Header 198
12.4 Context-Based Compression: IPHC 200
12.5 RPL 202
12.5.1 RPL Control Messages 204
12.5.2 Construction of the DODAG and Upward Routes 204
12.6 Downward Routes, Multicast Membership 206
12.7 Packet Routing 207
12.7.1 RPL Security 208
13 ZigBee Smart Energy 2.0 209
13.1 REST Overview 209
13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209
13.1.2 REST Verbs 210
13.1.3 Other REST Constraints, and What is REST After All? 211
13.2 ZigBee SEP 2.0 Overview 212
13.2.1 ZigBee IP 213
13.2.2 ZigBee SEP 2.0 Resources 214
13.3 Function Sets and Device Types 217
13.3.1 Base Function Set 218
13.3.2 Group Enrollment 221
13.3.3 Meter 223
13.3.4 Pricing 223
13.3.5 Demand Response and Load Control Function Set 224
13.3.6 Distributed Energy Resources 227
13.3.7 Plug-In Electric Vehicle 227
13.3.8 Messaging 230
13.3.9 Registration 231
13.4 ZigBee SE 2.0 Security 232
13.4.1 Certificates 232
13.4.2 IP Level Security 232
13.4.3 Application-Level Security 235
14 The ETSI M2M Architecture 237
14.1 Introduction to ETSI TC M2M 237
14.2 System Architecture 238
14.2.1 High-Level Architecture 238
14.2.2 Reference Points 239
14.2.3 Service Capabilities 240
14.3 ETSI M2M SCL Resource Structure 242
14.3.1 SCL Resources 244
14.3.2 Application Resources 244
14.3.3 Access Right Resources 248
14.3.4 Container Resources 248
14.3.5 Group Resources 250
14.3.6 Subscription and Notification Channel Resources 251
14.4 ETSI M2M Interactions Overview 252
14.5 Security in the ETSI M2M Framework 252
14.5.1 Key Management 252
14.5.2 Access Lists 254
14.6 Interworking with Machine Area Networks 255
14.6.1 Mapping M2M Networks to ETSI M2M Resources 256
14.6.2 Interworking with ZigBee 1.0 257
14.6.3 Interworking with C.12 262
14.6.4 Interworking with DLMS/COSEM 264
14.7 Conclusion on ETSI M2M 266
Part V KEY APPLICATIONS OF THE INTERNET OF THINGS
15 The Smart Grid 271
15.1 Introduction 271
15.2 The Marginal Cost of Electricity: Base and Peak Production 272
15.3 Managing Demand: The Next Challenge of Electricity Operators . . .
and
Why M2M Will Become a Key Technology 273
15.4 Demand Response for Transmission System Operators (TSO) 274
15.4.1 Grid-Balancing Authorities: The TSOs 274
15.4.2 Power Shedding: Who Pays What? 276
15.4.3 Automated Demand Response 277
15.5 Case Study: RTE in France 277
15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France
277
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281
15.5.3 Who Pays for the Network-Balancing Costs? 283
15.6 The Opportunity of Smart Distributed Energy Management 285
15.6.1 Assessing the Potential of Residential and Small-Business Powerz
Shedding (Heating/Cooling Control) 286
15.6.2 Analysis of a Typical Home 287
15.6.3 The Business Case 293
15.7 Demand Response: The Big Picture 300
15.7.1 From Network Balancing to Peak-Demand Suppression 300
15.7.2 Demand Response Beyond Heating Systems 304
15.8 Conclusion: The Business Case of Demand Response and Demand Shifting
is a Key Driver for the Deployment of the Internet of Things 305
16 Electric Vehicle Charging 307
16.1 Charging Standards Overview 307
16.1.1 IEC Standards Related to EV Charging 310
16.1.2 SAE Standards 317
16.1.3 J2293 318
16.1.4 CAN - Bus 319
16.1.5 J2847: The New "Recommended Practice" for High-Level
Communication Leveraging the ZigBee Smart Energy Profile 2.0 320
16.2 Use Cases 321
16.2.1 Basic Use Cases 321
16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323
16.3 Conclusion 324
Appendix A Normal Aggregate Power Demand of a Set of Identical
Heating Systems with Hysteresis 327
Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329
Appendix C Changing Tref without Introducing Correlation 331
C.1 Effect of an Increase of Tref 331
Appendix D Lower Consumption, A Side Benefit of Power Shedding 333
Index 337