Although our understanding of the structure and activities of the cell nucleus and of the nanomachines which it contains is increasing rapidly, much remains to be learned. The application and continuing development of the new, powerful biochemical and biophysical methodologies described here are essential in this quest. In The Nucleus, researchers from more than forty leading international laboratories describe state-of-the-art methods for isolating nuclei and their components and for studying their structure and activities, including some pathology-associated features. Volume 2: Chromatin, Transcription, Envelope, Proteins, Dynamics, and Imaging presents biophysical approaches to study the mechanical properties of nuclei, together with a comprehensive range of imaging methods. These include FISH, FRAP, FRET, molecular beacons, fluorescence correlation spectroscopy, single molecule tracking, and combing DNA for optical microscopy, recognition imaging for atomic force microscopy, and hybridisation, tomography, and spectroscopic imaging for electron microscopy. Written in the highly successful Methods in Molecular Biology(TM) series format, chapters contain lists of necessary materials and reagents, readily reproducible protocols, and tips for troubleshooting and avoiding known pitfalls.
The Nucleus, Volume 2: Chromatin, Transcription, Envelope, Proteins, Dynamics, and Imaging provides a comprehensive collection of the cutting-edge methods making a major contribution to understanding the nucleus and its nanostructure today.
The Nucleus, Volume 2: Chromatin, Transcription, Envelope, Proteins, Dynamics, and Imaging provides a comprehensive collection of the cutting-edge methods making a major contribution to understanding the nucleus and its nanostructure today.