John Rozier Cannon
The One-Dimensional Heat Equation
John Rozier Cannon
The One-Dimensional Heat Equation
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This is a version of Gevrey's classical treatise on the heat equations.
Andere Kunden interessierten sich auch für
- John Rozier CannonThe One-Dimensional Heat Equation201,99 €
- Muhammad A. ur RehmanNUMERICAL TECHNIQUES FOR HEAT EQUATION WITH BOUNDARY SPECIFICATIONS35,99 €
- Jan Ph WeißNumerical analysis of Lattice Boltzmann Methods for the heat equation on a bounded interval43,90 €
- J.J. DuistermaatThe Heat Kernel Lefschetz Fixed Point Formula for the Spin-C Dirac Operator81,99 €
- F. G. FriedlanderIntroduction to the Theory of Distributions72,99 €
- W. H. YoungThe Fundamental Theorems of the Differential Calculus25,99 €
- Youssef JabriThe Mountain Pass Theorem117,99 €
-
-
-
This is a version of Gevrey's classical treatise on the heat equations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 512
- Erscheinungstermin: 31. Juli 2008
- Englisch
- Abmessung: 234mm x 156mm x 27mm
- Gewicht: 769g
- ISBN-13: 9780521089449
- ISBN-10: 0521089441
- Artikelnr.: 25044714
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 512
- Erscheinungstermin: 31. Juli 2008
- Englisch
- Abmessung: 234mm x 156mm x 27mm
- Gewicht: 769g
- ISBN-13: 9780521089449
- ISBN-10: 0521089441
- Artikelnr.: 25044714
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Editor's statement; Foreword Felix E. Browder; Preface; Preliminaries; 1. Introduction; 2. The Cauchy problem; 3. The initial
value problem; 4. The initial
boundary
value problem for the quarter plane with temperature
boundary specification; 5. The initial
boundary
value problem for the quarter plane with heat
flux
boundary specification; 6. The initial
boundary
value problem for the semi
infinite strip with temperature
boundary specification and heat
flux
boundary specification; 7. The reduction of some initial
boundary
value problems for the semi
infinite strip, to integral equations: some exercises; 8. Integral equations; 9. Solutions of boundary
value problems for all times and periodic solutions; 10. Analyticity of solutions; 11. Continuous dependence upon the data for some state
estimation problems; 12. Some numerical methods for some state
estimation problems; 13. Determination of an unknown time
dependent diffusivity a(t) from overspecified data; 14. Initial
and/or boundary
value problems for gneral regions with Hölder continuous boundaries; 15. Some properties of solutions in general domains; 16. The solution in a general region with temperature
boundary specification: the method of perron
poincaré; 17. The one
phase stefan problem with temperature
boundary specification; 18. The one
phase stefan problem with flux
boundary specification: some exercises; 19. The inhomogeneous heat equation ut=uxx+f(x,t); 20. An application of the inhomogeneous heat equation: the equation ut=uxx+f(x,t,u,ux); Symbol index; Subject index.
value problem; 4. The initial
boundary
value problem for the quarter plane with temperature
boundary specification; 5. The initial
boundary
value problem for the quarter plane with heat
flux
boundary specification; 6. The initial
boundary
value problem for the semi
infinite strip with temperature
boundary specification and heat
flux
boundary specification; 7. The reduction of some initial
boundary
value problems for the semi
infinite strip, to integral equations: some exercises; 8. Integral equations; 9. Solutions of boundary
value problems for all times and periodic solutions; 10. Analyticity of solutions; 11. Continuous dependence upon the data for some state
estimation problems; 12. Some numerical methods for some state
estimation problems; 13. Determination of an unknown time
dependent diffusivity a(t) from overspecified data; 14. Initial
and/or boundary
value problems for gneral regions with Hölder continuous boundaries; 15. Some properties of solutions in general domains; 16. The solution in a general region with temperature
boundary specification: the method of perron
poincaré; 17. The one
phase stefan problem with temperature
boundary specification; 18. The one
phase stefan problem with flux
boundary specification: some exercises; 19. The inhomogeneous heat equation ut=uxx+f(x,t); 20. An application of the inhomogeneous heat equation: the equation ut=uxx+f(x,t,u,ux); Symbol index; Subject index.
Editor's statement; Foreword Felix E. Browder; Preface; Preliminaries; 1. Introduction; 2. The Cauchy problem; 3. The initial
value problem; 4. The initial
boundary
value problem for the quarter plane with temperature
boundary specification; 5. The initial
boundary
value problem for the quarter plane with heat
flux
boundary specification; 6. The initial
boundary
value problem for the semi
infinite strip with temperature
boundary specification and heat
flux
boundary specification; 7. The reduction of some initial
boundary
value problems for the semi
infinite strip, to integral equations: some exercises; 8. Integral equations; 9. Solutions of boundary
value problems for all times and periodic solutions; 10. Analyticity of solutions; 11. Continuous dependence upon the data for some state
estimation problems; 12. Some numerical methods for some state
estimation problems; 13. Determination of an unknown time
dependent diffusivity a(t) from overspecified data; 14. Initial
and/or boundary
value problems for gneral regions with Hölder continuous boundaries; 15. Some properties of solutions in general domains; 16. The solution in a general region with temperature
boundary specification: the method of perron
poincaré; 17. The one
phase stefan problem with temperature
boundary specification; 18. The one
phase stefan problem with flux
boundary specification: some exercises; 19. The inhomogeneous heat equation ut=uxx+f(x,t); 20. An application of the inhomogeneous heat equation: the equation ut=uxx+f(x,t,u,ux); Symbol index; Subject index.
value problem; 4. The initial
boundary
value problem for the quarter plane with temperature
boundary specification; 5. The initial
boundary
value problem for the quarter plane with heat
flux
boundary specification; 6. The initial
boundary
value problem for the semi
infinite strip with temperature
boundary specification and heat
flux
boundary specification; 7. The reduction of some initial
boundary
value problems for the semi
infinite strip, to integral equations: some exercises; 8. Integral equations; 9. Solutions of boundary
value problems for all times and periodic solutions; 10. Analyticity of solutions; 11. Continuous dependence upon the data for some state
estimation problems; 12. Some numerical methods for some state
estimation problems; 13. Determination of an unknown time
dependent diffusivity a(t) from overspecified data; 14. Initial
and/or boundary
value problems for gneral regions with Hölder continuous boundaries; 15. Some properties of solutions in general domains; 16. The solution in a general region with temperature
boundary specification: the method of perron
poincaré; 17. The one
phase stefan problem with temperature
boundary specification; 18. The one
phase stefan problem with flux
boundary specification: some exercises; 19. The inhomogeneous heat equation ut=uxx+f(x,t); 20. An application of the inhomogeneous heat equation: the equation ut=uxx+f(x,t,u,ux); Symbol index; Subject index.