114,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
57 °P sammeln
  • Broschiertes Buch

This detailed volume covers diverse aspects of P2X7 receptor analysis, ranging from its molecular structure to related pharmacological and immunological tools, via its analysis in heterologous expression systems as well as assays using primary cells and whole animal models. After three introductory chapters that focus on its structure, ligands, and physiological functions, the book details the generation of antibody and nanobody tools for P2X7 receptors, provides protocols for the analysis of expressed P2X7 receptors with a focus on their electrophysiological analysis, as well as protocols for…mehr

Produktbeschreibung
This detailed volume covers diverse aspects of P2X7 receptor analysis, ranging from its molecular structure to related pharmacological and immunological tools, via its analysis in heterologous expression systems as well as assays using primary cells and whole animal models. After three introductory chapters that focus on its structure, ligands, and physiological functions, the book details the generation of antibody and nanobody tools for P2X7 receptors, provides protocols for the analysis of expressed P2X7 receptors with a focus on their electrophysiological analysis, as well as protocols for the investigation of P2X7 down-stream signaling in immune cells by flow cytometry. Mouse models and procedures suited to investigate P2X7-mediated effects in other primary cells and in vivo are also explained. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.
Authoritative and practical, The P2X7 Receptor: Methods and Protocols is a valuable reference not only for the growing community fascinated by this unusual ion channel but also for a broad readership interested in ion channels or purinergic receptors.