109,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
Melden Sie sich für den Produktalarm an, um über die Verfügbarkeit des Produkts informiert zu werden.

  • Broschiertes Buch

Available for the first time in paperback, The Quantum Theory of Fields is a self-contained, comprehensive, and up-to-date introduction to quantum field theory from Nobel Laureate Steven Weinberg. The first volume introduces the foundations of quantum field theory, the second volume examines modern applications, and finally the third volume presents supersymmetry, an area of theoretical physics likely to be at the centre of progress in the physics of elementary particles and gravitation. The development is fresh and logical throughout, with each step carefully motivated by what has gone…mehr

Produktbeschreibung
Available for the first time in paperback, The Quantum Theory of Fields is a self-contained, comprehensive, and up-to-date introduction to quantum field theory from Nobel Laureate Steven Weinberg. The first volume introduces the foundations of quantum field theory, the second volume examines modern applications, and finally the third volume presents supersymmetry, an area of theoretical physics likely to be at the centre of progress in the physics of elementary particles and gravitation. The development is fresh and logical throughout, with each step carefully motivated by what has gone before. The presentation of modern mathematical methods is throughout interwoven with accounts of applications in both elementary particle and condensed matter physics. The three volumes contain much original material, and are peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Exercises are included at the end of each chapter.
Rezensionen
'... an impressively lucid and thorough presentation of the subject ... Weinberg manages to present difficult topics with richness of meaning and marvellous clarity. Full of valuable insights, his treatise is sure to become a classic, doing for quantum field theory what Dirac's Quantum Mechanics did for quantum mechanics.' S. S. Schweber, Nature