This book is based on notes for the course Fractals:lntroduction, Basics and Perspectives given by MichaelF. Barnsley, RobertL. Devaney, Heinz-Otto Peit gen, Dietmar Saupe and Richard F. Voss. The course was chaired by Heinz-Otto Peitgen and was part of the SIGGRAPH '87 (Anaheim, California) course pro gram. Though the five chapters of this book have emerged from those courses we have tried to make this book a coherent and uniformly styled presentation as much as possible. It is the first book which discusses fractals solely from the point of view of computer graphics. Though fundamental…mehr
This book is based on notes for the course Fractals:lntroduction, Basics and Perspectives given by MichaelF. Barnsley, RobertL. Devaney, Heinz-Otto Peit gen, Dietmar Saupe and Richard F. Voss. The course was chaired by Heinz-Otto Peitgen and was part of the SIGGRAPH '87 (Anaheim, California) course pro gram. Though the five chapters of this book have emerged from those courses we have tried to make this book a coherent and uniformly styled presentation as much as possible. It is the first book which discusses fractals solely from the point of view of computer graphics. Though fundamental concepts and algo rithms are not introduced and discussed in mathematical rigor we have made a serious attempt to justify and motivate wherever it appeared to be desirable. Ba sic algorithms are typically presented in pseudo-code or a description so close to code that a reader who is familiar with elementary computer graphics should find no problem to get started. Mandelbrot's fractal geometry provides both a description and a mathemat ical model for many of the seemingly complex forms and patterns in nature and the sciences. Fractals have blossomed enormously in the past few years and have helped reconnect pure mathematics research with both natural sciences and computing. Computer graphics has played an essential role both in its de velopment and rapidly growing popularity. Conversely, fractal geometry now plays an important role in the rendering, modelling and animation of natural phenomena and fantastic shapes in computer graphics.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Benoit B. Mandelbrot, geb. 1924 in Warschau, arbeitete als Mathematiker lange Zeit bei IBM, ist Honorarprofessor an der Yale University und Erfinder der fraktalen Geometrie. Mandelbrot lebt in Scarsdale, New York.
Inhaltsangabe
1 Fractals in nature: From characterization to simulation.- 1.1 Visual introduction to fractals: Coastlines, mountains and clouds.- 1.1.1 Mathematical monsters: The fractal heritage.- 1.1.2 Fractals and self-similarity.- 1.1.3 An early monster: The von Koch snowflake curve.- 1.1.4 Self-similarity and dimension.- 1.1.5 Statistical self-similarity.- 1.1.6 Mandelbrot landscapes.- 1.1.7 Fractally distributed craters.- 1.1.8 Fractal planet: Brownian motion on a sphere.- 1.1.9 Fractal flakes and clouds.- 1.2 Fractals in nature: A brief survey from aggregation to music.- 1.2.1 Fractals at large scales.- 1.2.2 Fractals at small scales: Condensing matter.- 1.2.3 Scaling randomness in time: 1/f?-noises.- 1.2.4 Fractal music.- 1.3 Mathematical models: Fractional Brownian motion.- 1.3.1 Self-affinity.- 1.3.2 Zerosets.- 1.3.3 Self-affinity in higher dimensions : Mandelbrot landscapes and clouds.- 1.3.4 Spectral densities for fBm and the spectral exponent ?.- 1.4 Algorithms: Approximating fBm on a finite grid.- 1.4.1 Brownian motion as independent cuts.- 1.4.2 Fast Fourier Transform filtering.- 1.4.3 Random midpoint displacement.- 1.4.4 Successive random additions.- 1.4.5 Weierstrass-Mandelbrot random fractal function.- 1.5 Laputa: A concluding tale.- 1.6 Mathematical details and formalism.- 1.6.1 Fractional Brownian motion.- 1.6.2 Exact and statistical self-similarity.- 1.6.3 Measuring the fractal dimension D.- 1.6.4 Self-affinity.- 1.6.5 The relation of D to H for self-affine fractional Brownian motion.- 1.6.6 Trails of fBm.- 1.6.7 Self-affinity in E dimensions.- 1.6.8 Spectral densities for fBm and the spectral exponent ?.- 1.6.9 Measuring fractal dimensions: Mandelbrot measures.- 1.6.10 Lacunarity.- 1.6.11 Random cuts with H ? 1/2: Campbell's theorem.- 1.6.12 FFT filtering in 2 and 3 dimensions.- 2 Algorithms for random fractals.- 2.1 Introduction.- 2.2 First case study: One-dimensional Brownian motion.- 2.2.1 Definitions.- 2.2.2 Integrating white noise.- 2.2.3 Generating Gaussian random numbers.- 2.2.4 Random midpoint displacement method.- 2.2.5 Independent jumps.- 2.3 Fractional Brownian motion : Approximation by spatial methods.- 2.3.1 Definitions.- 2.3.2 Midpoint displacement methods.- 2.3.3 Displacing interpolated points.- 2.4 Fractional Brownian motion : Approximation by spectral synthesis.- 2.4.1 The spectral representation of random functions.- 2.4.2 The spectral exponent ? in fractional Brownian motion.- 2.4.3 The Fourier filtering method.- 2.5 Extensions to higher dimensions.- 2.5.1 Definitions.- 2.5.2 Displacement methods.- 2.5.3 The Fourier filtering method.- 2.6 Generalized stochastic subdivision and spectral synthesis of ocean waves.- 2.7 Computer graphics for smooth and fractal surfaces.- 2.7.1 Top view with color mapped elevations.- 2.7.2 Extended floating horizon method.- Color plates and captions.- 2.7.3 The data and the projection.- 2.7.4 A simple illumination model.- 2.7.5 The rendering.- 2.7.6 Data manipulation.- 2.7.7 Color, anti-aliasing and shadows.- 2.7.8 Data storage considerations.- 2.8 Random variables and random functions.- 3 Fractal patterns arising in chaotic dynamical systems.- 3.1 Introduction.- 3.1.1 Dynamical systems.- 3.1.2 An example from ecology.- 3.1.3 Iteration.- 3.1.4 Orbits.- 3.2 Chaotic dynamical systems.- 3.2.1 Instability: The chaotic set.- 3.2.2 A chaotic set in the plane.- 3.2.3 A chaotic gingerbreadman.- 3.3 Complex dynamical systems.- 3.3.1 Complex maps.- 3.3.2 The Julia set.- 3.3.3 Julia sets as basin boundaries.- 3.3.4 Other Julia sets.- 3.3.5 Exploding Julia sets.- 3.3.6 Intermittency.- 4 Fantastic deterministic fractals.- 4.1 Introduction.- 4.2 The quadratic family.- 4.2.1 The Mandelbrot set.- 4.2.2 Hunting for Kc in the plane - the role of critical points.- 4.2.3 Level sets.- 4.2.4 Equipotential curves.- 4.2.5 Distance estimators.- 4.2.6 External angles and binary decompositions.- 4.2.7 Mandelbrot set as one-page-dictionary of Julia sets.- 4.3 Generalizations and extensions.- 4.3.1
1 Fractals in nature: From characterization to simulation.- 1.1 Visual introduction to fractals: Coastlines, mountains and clouds.- 1.1.1 Mathematical monsters: The fractal heritage.- 1.1.2 Fractals and self-similarity.- 1.1.3 An early monster: The von Koch snowflake curve.- 1.1.4 Self-similarity and dimension.- 1.1.5 Statistical self-similarity.- 1.1.6 Mandelbrot landscapes.- 1.1.7 Fractally distributed craters.- 1.1.8 Fractal planet: Brownian motion on a sphere.- 1.1.9 Fractal flakes and clouds.- 1.2 Fractals in nature: A brief survey from aggregation to music.- 1.2.1 Fractals at large scales.- 1.2.2 Fractals at small scales: Condensing matter.- 1.2.3 Scaling randomness in time: 1/f?-noises.- 1.2.4 Fractal music.- 1.3 Mathematical models: Fractional Brownian motion.- 1.3.1 Self-affinity.- 1.3.2 Zerosets.- 1.3.3 Self-affinity in higher dimensions : Mandelbrot landscapes and clouds.- 1.3.4 Spectral densities for fBm and the spectral exponent ?.- 1.4 Algorithms: Approximating fBm on a finite grid.- 1.4.1 Brownian motion as independent cuts.- 1.4.2 Fast Fourier Transform filtering.- 1.4.3 Random midpoint displacement.- 1.4.4 Successive random additions.- 1.4.5 Weierstrass-Mandelbrot random fractal function.- 1.5 Laputa: A concluding tale.- 1.6 Mathematical details and formalism.- 1.6.1 Fractional Brownian motion.- 1.6.2 Exact and statistical self-similarity.- 1.6.3 Measuring the fractal dimension D.- 1.6.4 Self-affinity.- 1.6.5 The relation of D to H for self-affine fractional Brownian motion.- 1.6.6 Trails of fBm.- 1.6.7 Self-affinity in E dimensions.- 1.6.8 Spectral densities for fBm and the spectral exponent ?.- 1.6.9 Measuring fractal dimensions: Mandelbrot measures.- 1.6.10 Lacunarity.- 1.6.11 Random cuts with H ? 1/2: Campbell's theorem.- 1.6.12 FFT filtering in 2 and 3 dimensions.- 2 Algorithms for random fractals.- 2.1 Introduction.- 2.2 First case study: One-dimensional Brownian motion.- 2.2.1 Definitions.- 2.2.2 Integrating white noise.- 2.2.3 Generating Gaussian random numbers.- 2.2.4 Random midpoint displacement method.- 2.2.5 Independent jumps.- 2.3 Fractional Brownian motion : Approximation by spatial methods.- 2.3.1 Definitions.- 2.3.2 Midpoint displacement methods.- 2.3.3 Displacing interpolated points.- 2.4 Fractional Brownian motion : Approximation by spectral synthesis.- 2.4.1 The spectral representation of random functions.- 2.4.2 The spectral exponent ? in fractional Brownian motion.- 2.4.3 The Fourier filtering method.- 2.5 Extensions to higher dimensions.- 2.5.1 Definitions.- 2.5.2 Displacement methods.- 2.5.3 The Fourier filtering method.- 2.6 Generalized stochastic subdivision and spectral synthesis of ocean waves.- 2.7 Computer graphics for smooth and fractal surfaces.- 2.7.1 Top view with color mapped elevations.- 2.7.2 Extended floating horizon method.- Color plates and captions.- 2.7.3 The data and the projection.- 2.7.4 A simple illumination model.- 2.7.5 The rendering.- 2.7.6 Data manipulation.- 2.7.7 Color, anti-aliasing and shadows.- 2.7.8 Data storage considerations.- 2.8 Random variables and random functions.- 3 Fractal patterns arising in chaotic dynamical systems.- 3.1 Introduction.- 3.1.1 Dynamical systems.- 3.1.2 An example from ecology.- 3.1.3 Iteration.- 3.1.4 Orbits.- 3.2 Chaotic dynamical systems.- 3.2.1 Instability: The chaotic set.- 3.2.2 A chaotic set in the plane.- 3.2.3 A chaotic gingerbreadman.- 3.3 Complex dynamical systems.- 3.3.1 Complex maps.- 3.3.2 The Julia set.- 3.3.3 Julia sets as basin boundaries.- 3.3.4 Other Julia sets.- 3.3.5 Exploding Julia sets.- 3.3.6 Intermittency.- 4 Fantastic deterministic fractals.- 4.1 Introduction.- 4.2 The quadratic family.- 4.2.1 The Mandelbrot set.- 4.2.2 Hunting for Kc in the plane - the role of critical points.- 4.2.3 Level sets.- 4.2.4 Equipotential curves.- 4.2.5 Distance estimators.- 4.2.6 External angles and binary decompositions.- 4.2.7 Mandelbrot set as one-page-dictionary of Julia sets.- 4.3 Generalizations and extensions.- 4.3.1
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826