The Sun from Space is a comprehensive account of solar astrophysics and how our perception and knowledge of this star have gradually evolved as mankind has elucidated ever more of its mysteries. The emphasis is on the last decade, which has seen three successful solar spacecraft missions: SOHO, Ulysses and Yohkoh. Together these have confirmed many aspects of the SUN and its output, and provided new clues to the numerous open questions that remain. The author, a leading researcher in the field, writes in a clear and concise style. Known also for his famous books "Astrophysical Formulae", "Sun, Earth and Sky" and the prize-winning "Wanderers in Space", he has succeeded once again in addressing a complex scientific topic in a very approachable way. Hence, this generously illustrated book, whilst primarily addressing students, will also be of interest to a broader readership covering all levels from the amateur to the expert.
Newton's inverse-square law of gravitation has been one of the cornerstones of physics ever since it was proposed 300 years ago. One of its most well known features is the prediction that all objects fall in a gravitational field with the same acceleration. This observation, in the form of the Equivalence Principle, is a fundamental assumption of Einstein's General Relativity Theory. This book traces the history of attempts to test the predictions of Newtonian Gravity, and describes in detail recent experimental efforts to verify both the inverse-square law and the Equivalence Principle. Interest in these questions have increased in recent years, as it has become recognized that deviations from Newtonian gravity could be a signal for a new fundamental force in nature. This is the first book devoted entirely to this subject, and will be useful to both graduate students and researchers interested in this field. This book describes in detail the ideas that underlie searches for deviations from the predictions of Newtonian gravity, focusing on macroscopic tests, since the question of gravitational effects in quantum systems would warrant a separate work. A historical development is combined with detailed technical discussions of the theoretical ideas and experimental results. A comprehensive bibliography with approximately 450 entries is provided.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Newton's inverse-square law of gravitation has been one of the cornerstones of physics ever since it was proposed 300 years ago. One of its most well known features is the prediction that all objects fall in a gravitational field with the same acceleration. This observation, in the form of the Equivalence Principle, is a fundamental assumption of Einstein's General Relativity Theory. This book traces the history of attempts to test the predictions of Newtonian Gravity, and describes in detail recent experimental efforts to verify both the inverse-square law and the Equivalence Principle. Interest in these questions have increased in recent years, as it has become recognized that deviations from Newtonian gravity could be a signal for a new fundamental force in nature. This is the first book devoted entirely to this subject, and will be useful to both graduate students and researchers interested in this field. This book describes in detail the ideas that underlie searches for deviations from the predictions of Newtonian gravity, focusing on macroscopic tests, since the question of gravitational effects in quantum systems would warrant a separate work. A historical development is combined with detailed technical discussions of the theoretical ideas and experimental results. A comprehensive bibliography with approximately 450 entries is provided.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.