Roger Herz-Fischler
The Shape of the Great Pyramid
Roger Herz-Fischler
The Shape of the Great Pyramid
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Many theories surround the geometric and mathematical factors that determined the shape of the Great Pyramid. Herz-Fischler examines and tests the theories of a range of, mostly Victorian, archaeologists, architects, engineers and mathematicians including Jomard, Perring, Ramee and Petrie.
Andere Kunden interessierten sich auch für
- Olinthus Gilbert GregoryMathematics for Practical Men29,99 €
- Leonard MetcalfAmerican Sewerage Practice ...; Volume 235,99 €
- The Changing Shape of Practice83,99 €
- Olinthus GregoryMathematics for Practical Men: Being a Common-Place Book of Principles, Theorems, Rules, and Tables, in Various Departments of Pure and Mixed Mathema33,99 €
- Sixteen Shades of Smart: How cities can shape their own future49,99 €
- Joseph AdhémarCours de Mathématiques À l'Usage de l'Ingénieur Civil: Géométrie Descriptive21,99 €
- Joseph AdhémarCours de Mathématiques À l'Usage de l'Ingénieur Civil. Supplément Au Traité de Géométrie Descriptive18,99 €
-
-
-
Many theories surround the geometric and mathematical factors that determined the shape of the Great Pyramid. Herz-Fischler examines and tests the theories of a range of, mostly Victorian, archaeologists, architects, engineers and mathematicians including Jomard, Perring, Ramee and Petrie.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wilfrid Laurier University Press
- Seitenzahl: 305
- Erscheinungstermin: 20. Oktober 2000
- Englisch
- Abmessung: 229mm x 154mm x 17mm
- Gewicht: 404g
- ISBN-13: 9780889203242
- ISBN-10: 0889203245
- Artikelnr.: 37261005
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wilfrid Laurier University Press
- Seitenzahl: 305
- Erscheinungstermin: 20. Oktober 2000
- Englisch
- Abmessung: 229mm x 154mm x 17mm
- Gewicht: 404g
- ISBN-13: 9780889203242
- ISBN-10: 0889203245
- Artikelnr.: 37261005
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Roger Herz-Fischler teaches mathematics at Carleton University.
Table of Contents for
The Shape of the Great Pyramid by Roger Herz-Fischler
Acknowledgements
Introduction
Part I. The Context
Chapter 1. Historical and Architectural Context
Chapter 2. External Dimensions and Construction
Surveyed Dimensions
Angle of Inclination of the Faces
Egyptian Units of Measurement
Building and Measuring Techniques
Chapter 3. Historiography
Early Writings on the Dimensions
Modern Historiographers
Part II. One Pyramid, Many Theories
Diagrams
Chapter 4. A Summary of Theories
Definitions of the Symbols-Observered Values
A Comparison of the Theories
Chapter 5. Seked Theory
The Mathematical Description of the Theory
Seked Problems in the Rhind Papyrus
Archaeological Evidence
Early Interpretations of the Rhind Papyrus
Petrie
Borchardt
Philosophical and Practical Considerations
Chapter 6. Arris = Side
The Mathematical Description of the Theory
Herodotus (vth century)
Greaves (1641)
Paucton (1781)
Jomard (1809)
Agnew (1838)
Fergusson (1849)
Becektt (1876)
Howards, Wells (1912)
Chapter 7. Side : Apothem = 5 : 4
The Mathematical Description of the Theory
Plutarch's Isis and Osiris
Jomard (1809)
Perring (1842)
Ramée (1860)
Chapter 8. Side : Height = 8 : 5
The Mathematical Description of the Theory
Jomard (1809)
Agnew (1838)
Perring (1840?)
Röber (1855)
Ramée (1860)
Viollet-le-Duc (1863)
Garbett, (1866)
A.X., (1866)
Brunés (1967)
Chapter 9. Pi-theory
The Mathematical Description of the Theory
Egyptian Circle Calculations
Agnew (1838)
Vyse (1840)
Chantrell (1847)
Taylor (1859)
Herschel (1860)
Smyth (1864)
Petrie (1874)
Beckett (1876)
Proctor (1877)
Twentieth-Century Authors
Chapter 10. Heptagon Theory
The Mathematical Description of the Theory
Fergusson (1849)
Texier (1934)
Chapter 11. Kepler Triangle Theory
The Mathematical Description of the Theory
Kepler Triangle and Equal Area Theories
Kepler Triangle, Golden Number, Equal Area
Röber (1855)
Drach, Garbett (1866)
Jarolimek (1890)
Neikes (1907)
Chapter 12. Height = Golden Number
The Mathematical Description of the Theory
Röber (1855)
Zeising (1855)
Misinterpretations of Röber
Choisy (1899)
Chapter 13. Equal Area Theory
The Mathematical Description of the Theory
The Passage from Herodotus
Agnew (1838)
Taylor (1859)
Herschel (1860)
Thurnell (1866)
Garbett (1866)
Smyth (1874)
Hankel (1874)
Beckett and Friend (1876)
Proctor (1880)
Ballard (1882)
Petrie (1883)
Twentieth-Century Authors
Chapter 14. Slope of the Arris = 9/10
The Mathematical Description of the Theory
William Petrie (1867)
James and O'Farrell (1867)
Smyth (1874)
Beckett (1876), Bonwick (1877), Ballard (1882)
Flinders Petrie (1883)
Texier (1939)
Lauer (1944)
Chapter 15. Height : Arris = 2 : 3
The Mathematical Description of the Theory
Unknown (before 1883)
Chapter 16. Additional Theories
Part III. Conclusions
Chapter 17. Philosophical Considerations
Chapter 18. Sociology of the Theories-A Case Study: The Pi-theory
The Social and Intellectual Background in Victorian Britian
Relationship of the Pi-theory to Other Topics
A Profile of the Authors
Chapter 19. Conclusions
The Sociology of the Theories
What Was the Design Principle?
Appendices
Appendix 1. An Annotated Bibliography
Appendix 2. Tombal Superstructures: References and Dimensions
Appendix 3. Egyptian Measures
Appendix 4. Egyptian Mathematics
Appendix 5. Greek and Greek-Egyptian Measures
Notes
Bibliography/Notes
The Shape of the Great Pyramid by Roger Herz-Fischler
Acknowledgements
Introduction
Part I. The Context
Chapter 1. Historical and Architectural Context
Chapter 2. External Dimensions and Construction
Surveyed Dimensions
Angle of Inclination of the Faces
Egyptian Units of Measurement
Building and Measuring Techniques
Chapter 3. Historiography
Early Writings on the Dimensions
Modern Historiographers
Part II. One Pyramid, Many Theories
Diagrams
Chapter 4. A Summary of Theories
Definitions of the Symbols-Observered Values
A Comparison of the Theories
Chapter 5. Seked Theory
The Mathematical Description of the Theory
Seked Problems in the Rhind Papyrus
Archaeological Evidence
Early Interpretations of the Rhind Papyrus
Petrie
Borchardt
Philosophical and Practical Considerations
Chapter 6. Arris = Side
The Mathematical Description of the Theory
Herodotus (vth century)
Greaves (1641)
Paucton (1781)
Jomard (1809)
Agnew (1838)
Fergusson (1849)
Becektt (1876)
Howards, Wells (1912)
Chapter 7. Side : Apothem = 5 : 4
The Mathematical Description of the Theory
Plutarch's Isis and Osiris
Jomard (1809)
Perring (1842)
Ramée (1860)
Chapter 8. Side : Height = 8 : 5
The Mathematical Description of the Theory
Jomard (1809)
Agnew (1838)
Perring (1840?)
Röber (1855)
Ramée (1860)
Viollet-le-Duc (1863)
Garbett, (1866)
A.X., (1866)
Brunés (1967)
Chapter 9. Pi-theory
The Mathematical Description of the Theory
Egyptian Circle Calculations
Agnew (1838)
Vyse (1840)
Chantrell (1847)
Taylor (1859)
Herschel (1860)
Smyth (1864)
Petrie (1874)
Beckett (1876)
Proctor (1877)
Twentieth-Century Authors
Chapter 10. Heptagon Theory
The Mathematical Description of the Theory
Fergusson (1849)
Texier (1934)
Chapter 11. Kepler Triangle Theory
The Mathematical Description of the Theory
Kepler Triangle and Equal Area Theories
Kepler Triangle, Golden Number, Equal Area
Röber (1855)
Drach, Garbett (1866)
Jarolimek (1890)
Neikes (1907)
Chapter 12. Height = Golden Number
The Mathematical Description of the Theory
Röber (1855)
Zeising (1855)
Misinterpretations of Röber
Choisy (1899)
Chapter 13. Equal Area Theory
The Mathematical Description of the Theory
The Passage from Herodotus
Agnew (1838)
Taylor (1859)
Herschel (1860)
Thurnell (1866)
Garbett (1866)
Smyth (1874)
Hankel (1874)
Beckett and Friend (1876)
Proctor (1880)
Ballard (1882)
Petrie (1883)
Twentieth-Century Authors
Chapter 14. Slope of the Arris = 9/10
The Mathematical Description of the Theory
William Petrie (1867)
James and O'Farrell (1867)
Smyth (1874)
Beckett (1876), Bonwick (1877), Ballard (1882)
Flinders Petrie (1883)
Texier (1939)
Lauer (1944)
Chapter 15. Height : Arris = 2 : 3
The Mathematical Description of the Theory
Unknown (before 1883)
Chapter 16. Additional Theories
Part III. Conclusions
Chapter 17. Philosophical Considerations
Chapter 18. Sociology of the Theories-A Case Study: The Pi-theory
The Social and Intellectual Background in Victorian Britian
Relationship of the Pi-theory to Other Topics
A Profile of the Authors
Chapter 19. Conclusions
The Sociology of the Theories
What Was the Design Principle?
Appendices
Appendix 1. An Annotated Bibliography
Appendix 2. Tombal Superstructures: References and Dimensions
Appendix 3. Egyptian Measures
Appendix 4. Egyptian Mathematics
Appendix 5. Greek and Greek-Egyptian Measures
Notes
Bibliography/Notes
Table of Contents for
The Shape of the Great Pyramid by Roger Herz-Fischler
Acknowledgements
Introduction
Part I. The Context
Chapter 1. Historical and Architectural Context
Chapter 2. External Dimensions and Construction
Surveyed Dimensions
Angle of Inclination of the Faces
Egyptian Units of Measurement
Building and Measuring Techniques
Chapter 3. Historiography
Early Writings on the Dimensions
Modern Historiographers
Part II. One Pyramid, Many Theories
Diagrams
Chapter 4. A Summary of Theories
Definitions of the Symbols-Observered Values
A Comparison of the Theories
Chapter 5. Seked Theory
The Mathematical Description of the Theory
Seked Problems in the Rhind Papyrus
Archaeological Evidence
Early Interpretations of the Rhind Papyrus
Petrie
Borchardt
Philosophical and Practical Considerations
Chapter 6. Arris = Side
The Mathematical Description of the Theory
Herodotus (vth century)
Greaves (1641)
Paucton (1781)
Jomard (1809)
Agnew (1838)
Fergusson (1849)
Becektt (1876)
Howards, Wells (1912)
Chapter 7. Side : Apothem = 5 : 4
The Mathematical Description of the Theory
Plutarch's Isis and Osiris
Jomard (1809)
Perring (1842)
Ramée (1860)
Chapter 8. Side : Height = 8 : 5
The Mathematical Description of the Theory
Jomard (1809)
Agnew (1838)
Perring (1840?)
Röber (1855)
Ramée (1860)
Viollet-le-Duc (1863)
Garbett, (1866)
A.X., (1866)
Brunés (1967)
Chapter 9. Pi-theory
The Mathematical Description of the Theory
Egyptian Circle Calculations
Agnew (1838)
Vyse (1840)
Chantrell (1847)
Taylor (1859)
Herschel (1860)
Smyth (1864)
Petrie (1874)
Beckett (1876)
Proctor (1877)
Twentieth-Century Authors
Chapter 10. Heptagon Theory
The Mathematical Description of the Theory
Fergusson (1849)
Texier (1934)
Chapter 11. Kepler Triangle Theory
The Mathematical Description of the Theory
Kepler Triangle and Equal Area Theories
Kepler Triangle, Golden Number, Equal Area
Röber (1855)
Drach, Garbett (1866)
Jarolimek (1890)
Neikes (1907)
Chapter 12. Height = Golden Number
The Mathematical Description of the Theory
Röber (1855)
Zeising (1855)
Misinterpretations of Röber
Choisy (1899)
Chapter 13. Equal Area Theory
The Mathematical Description of the Theory
The Passage from Herodotus
Agnew (1838)
Taylor (1859)
Herschel (1860)
Thurnell (1866)
Garbett (1866)
Smyth (1874)
Hankel (1874)
Beckett and Friend (1876)
Proctor (1880)
Ballard (1882)
Petrie (1883)
Twentieth-Century Authors
Chapter 14. Slope of the Arris = 9/10
The Mathematical Description of the Theory
William Petrie (1867)
James and O'Farrell (1867)
Smyth (1874)
Beckett (1876), Bonwick (1877), Ballard (1882)
Flinders Petrie (1883)
Texier (1939)
Lauer (1944)
Chapter 15. Height : Arris = 2 : 3
The Mathematical Description of the Theory
Unknown (before 1883)
Chapter 16. Additional Theories
Part III. Conclusions
Chapter 17. Philosophical Considerations
Chapter 18. Sociology of the Theories-A Case Study: The Pi-theory
The Social and Intellectual Background in Victorian Britian
Relationship of the Pi-theory to Other Topics
A Profile of the Authors
Chapter 19. Conclusions
The Sociology of the Theories
What Was the Design Principle?
Appendices
Appendix 1. An Annotated Bibliography
Appendix 2. Tombal Superstructures: References and Dimensions
Appendix 3. Egyptian Measures
Appendix 4. Egyptian Mathematics
Appendix 5. Greek and Greek-Egyptian Measures
Notes
Bibliography/Notes
The Shape of the Great Pyramid by Roger Herz-Fischler
Acknowledgements
Introduction
Part I. The Context
Chapter 1. Historical and Architectural Context
Chapter 2. External Dimensions and Construction
Surveyed Dimensions
Angle of Inclination of the Faces
Egyptian Units of Measurement
Building and Measuring Techniques
Chapter 3. Historiography
Early Writings on the Dimensions
Modern Historiographers
Part II. One Pyramid, Many Theories
Diagrams
Chapter 4. A Summary of Theories
Definitions of the Symbols-Observered Values
A Comparison of the Theories
Chapter 5. Seked Theory
The Mathematical Description of the Theory
Seked Problems in the Rhind Papyrus
Archaeological Evidence
Early Interpretations of the Rhind Papyrus
Petrie
Borchardt
Philosophical and Practical Considerations
Chapter 6. Arris = Side
The Mathematical Description of the Theory
Herodotus (vth century)
Greaves (1641)
Paucton (1781)
Jomard (1809)
Agnew (1838)
Fergusson (1849)
Becektt (1876)
Howards, Wells (1912)
Chapter 7. Side : Apothem = 5 : 4
The Mathematical Description of the Theory
Plutarch's Isis and Osiris
Jomard (1809)
Perring (1842)
Ramée (1860)
Chapter 8. Side : Height = 8 : 5
The Mathematical Description of the Theory
Jomard (1809)
Agnew (1838)
Perring (1840?)
Röber (1855)
Ramée (1860)
Viollet-le-Duc (1863)
Garbett, (1866)
A.X., (1866)
Brunés (1967)
Chapter 9. Pi-theory
The Mathematical Description of the Theory
Egyptian Circle Calculations
Agnew (1838)
Vyse (1840)
Chantrell (1847)
Taylor (1859)
Herschel (1860)
Smyth (1864)
Petrie (1874)
Beckett (1876)
Proctor (1877)
Twentieth-Century Authors
Chapter 10. Heptagon Theory
The Mathematical Description of the Theory
Fergusson (1849)
Texier (1934)
Chapter 11. Kepler Triangle Theory
The Mathematical Description of the Theory
Kepler Triangle and Equal Area Theories
Kepler Triangle, Golden Number, Equal Area
Röber (1855)
Drach, Garbett (1866)
Jarolimek (1890)
Neikes (1907)
Chapter 12. Height = Golden Number
The Mathematical Description of the Theory
Röber (1855)
Zeising (1855)
Misinterpretations of Röber
Choisy (1899)
Chapter 13. Equal Area Theory
The Mathematical Description of the Theory
The Passage from Herodotus
Agnew (1838)
Taylor (1859)
Herschel (1860)
Thurnell (1866)
Garbett (1866)
Smyth (1874)
Hankel (1874)
Beckett and Friend (1876)
Proctor (1880)
Ballard (1882)
Petrie (1883)
Twentieth-Century Authors
Chapter 14. Slope of the Arris = 9/10
The Mathematical Description of the Theory
William Petrie (1867)
James and O'Farrell (1867)
Smyth (1874)
Beckett (1876), Bonwick (1877), Ballard (1882)
Flinders Petrie (1883)
Texier (1939)
Lauer (1944)
Chapter 15. Height : Arris = 2 : 3
The Mathematical Description of the Theory
Unknown (before 1883)
Chapter 16. Additional Theories
Part III. Conclusions
Chapter 17. Philosophical Considerations
Chapter 18. Sociology of the Theories-A Case Study: The Pi-theory
The Social and Intellectual Background in Victorian Britian
Relationship of the Pi-theory to Other Topics
A Profile of the Authors
Chapter 19. Conclusions
The Sociology of the Theories
What Was the Design Principle?
Appendices
Appendix 1. An Annotated Bibliography
Appendix 2. Tombal Superstructures: References and Dimensions
Appendix 3. Egyptian Measures
Appendix 4. Egyptian Mathematics
Appendix 5. Greek and Greek-Egyptian Measures
Notes
Bibliography/Notes