41,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Gebundenes Buch

This text is an introduction to the representation theory of the symmetric group from three different points of view: via general representation theory, via combinatorial algorithms, and via symmetric functions. It is the only book to deal with all three aspects of this subject at once. The style of presentation is relaxed yet rigorous and the prerequisites have been kept to a minimum--undergraduate courses in linear algebra and group theory will suffice. And this is a very active area of current research, so the text will appeal to graduate students and mathematicians in other specialties…mehr

Produktbeschreibung
This text is an introduction to the representation theory of the symmetric group from three different points of view: via general representation theory, via combinatorial algorithms, and via symmetric functions. It is the only book to deal with all three aspects of this subject at once. The style of presentation is relaxed yet rigorous and the prerequisites have been kept to a minimum--undergraduate courses in linear algebra and group theory will suffice. And this is a very active area of current research, so the text will appeal to graduate students and mathematicians in other specialties interested in finding out about this field. On the other hand, a number of the combinatorial results presented have never appeared in book form before and so the volume will serve as a good reference for teachers already working in this area. Among these results are Haiman's theory of dual equivalence and the beautiful Novelli-Pak-Stoyanovskii proof of the hook formula (the latter being new to the second edition). In addition, there is a new chapter on applications of materials from the first edition. Bruce Sagan is Professor of Mathematics at Michigan State University and has authored over 50 papers in combinatorics and its relation to algebra and topology. When he is not proving theorems, he is playing folk music from Scandinavian and the Balkans on the fiddle and its ethnic relatives.
I have been very gratified by the response to the first edition, which has resulted in it being sold out. This put some pressure on me to come out with a second edition and now, finally, here it is. The original text has stayed much the same, the major change being in the treatment of the hook formula which is now based on the beautiful Novelli-Pak-Stoyanovskii bijection (NPS 97]. I have also added a chapter on applications of the material from the first edition. This includes Stanley's theory of differential posets (Stn 88, Stn 90] and Fomin's related concept of growths (Fom 86, Fom 94, Fom 95], which extends some of the combinatorics of Sn-representations. Next come a couple of sections showing how groups acting on posets give rise to interesting representations that can be used to prove unimodality results (Stn 82]. Finally, we discuss Stanley's symmetric function analogue of the chromatic polynomial of a graph (Stn 95, Stn ta]. I would like to thank all the people, too numerous to mention, who pointed out typos in the first edition. My computer has been severely reprimanded for making them. Thanks also go to Christian Krattenthaler, Tom Roby, and Richard Stanley, all of whom read portions of the new material and gave me their comments. Finally, I would like to give my heartfelt thanks to my editor at Springer, Ina Lindemann, who has been very supportive and helpful through various difficult times.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
There has recently been a resurgence of interest in representations of symmetric groups as well as other Coxeter groups. This book brings together for the first time many of the important results in this field. It includes a new chapter on applications of the materials from the first edition. The only prerequisites are elementary group theory and linear algebra.
Rezensionen
From the reviews of the second edition: "This work is an introduction to the representation theory of the symmetric group. Unlike other books on the subject this text deals with the symmetric group from three different points of view: general representation theory, combinatorial algorithms and symmetric functions. ... This book is a digestible text for a graduate student and is also useful for a researcher in the field of algebraic combinatorics for reference." (Attila Maróti, Acta Scientiarum Mathematicarum, Vol. 68, 2002) "A classic gets even better. ... The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley's proof of the sum of squares formula using differential posets, Fomin's bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic symmetric functions." (David M. Bressoud, Zentralblatt MATH, Vol. 964, 2001)