This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.
This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Artikelnr. des Verlages: 11317661, 978-3-540-22984-1
2004
Seitenzahl: 260
Erscheinungstermin: 16. September 2004
Englisch
Abmessung: 235mm x 155mm x 15mm
Gewicht: 408g
ISBN-13: 9783540229841
ISBN-10: 3540229841
Artikelnr.: 13129760
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Charles Favre, Université Denis Diderot, Paris, France / Mattias Jonsson, University of Michigan, Ann Arbor, MI, USA
Inhaltsangabe
1 Generalities.- 1.1 Setup.- 1.2 Valuations.- 1.3 Krull Valuations.- 1.4 Plane Curves.- 1.5 Examples of Valuations.- 1.6 Valuations Versus Krull Valuations.- 1.7 Sequences of Blowups and Krull Valuations.- 2 MacLane's Method.- 2.1 Sequences of Key Polynomials.- 2.2 Classification.- 2.3 Graded Rings and Numerical Invariants.- 2.4 From Valuations to SKP's.- 2.5 A Computation.- 3 Tree Structures.- 3.1 Trees.- 3.2 Nonmetric Tree Structure on V.- 3.3 Parameterization of V by Skewness.- 3.4 Multiplicities.- 3.5 Approximating Sequences.- 3.6 Thinness.- 3.7 Value Semigroups and Approximating Sequences.- 3.8 Balls of Curves.- 3.9 The Relative Tree Structure.- 4 Valuations Through Puiseux Series.- 4.1 Puiseux Series and Valuations.- 4.2 Tree Structure.- 4.3 Galois Action.- 4.4 A Tale of Two Trees.- 4.5 The Berkovich Projective Line.- 4.6 The Bruhat-Tits Metric.- 4.7 Dictionary.- 5 Topologies.- 5.1 The Weak Topology.- 5.2 The Strong Topology on V.- 5.3 The Strong Topology on Vqm.- 5.4 Thin Topologies.- 5.5 The Zariski Topology.- 5.6 The Hausdorff-Zariski Topology.- 5.7 Comparison of Topologies.- 6 The Universal Dual Graph.- 6.1 Nonmetric Tree Structure.- 6.2 Infinitely Near Points.- 6.3 Parameterization and Multiplicity.- 6.4 The Isomorphism.- 6.5 Proof of the Isomorphism.- 6.6 Applications.- 6.7 The Dual Graph of the Minimal Desingularization.- 6.8 The Relative Tree Structure.- 7 Tree Measures.- 7.1 Outline.- 7.2 More on the Weak Topology.- 7.3 Borel Measures.- 7.4 Functions of Bounded Variation.- 7.5 Representation Theorem I.- 7.6 Complex Tree Potentials.- 7.7 Representation Theorem II.- 7.8 Atomic Measures.- 7.9 Positive Tree Potentials.- 7.10 Weak Topologies and Compactness.- 7.11 Restrictions to Subtrees.- 7.12 Inner Products.- 8 Applications of the Tree Analysis.- 8.1Zariski's Theory of Complete Ideals.- 8.2 The Voûte étoilée.- A Infinitely Singular Valuations.- A.1 Characterizations.- A.2 Constructions.- B The Tangent Space at a Divisorial Valuation.- C Classification.- D Combinatorics of Plane Curve Singularities.- D.1 Zariski's Terminology for Plane Curve Singularities.- D.2 The Eggers Tree.- E.1 Completeness.- E.2 The Residue Field.- References.
1 Generalities.- 1.1 Setup.- 1.2 Valuations.- 1.3 Krull Valuations.- 1.4 Plane Curves.- 1.5 Examples of Valuations.- 1.6 Valuations Versus Krull Valuations.- 1.7 Sequences of Blowups and Krull Valuations.- 2 MacLane's Method.- 2.1 Sequences of Key Polynomials.- 2.2 Classification.- 2.3 Graded Rings and Numerical Invariants.- 2.4 From Valuations to SKP's.- 2.5 A Computation.- 3 Tree Structures.- 3.1 Trees.- 3.2 Nonmetric Tree Structure on V.- 3.3 Parameterization of V by Skewness.- 3.4 Multiplicities.- 3.5 Approximating Sequences.- 3.6 Thinness.- 3.7 Value Semigroups and Approximating Sequences.- 3.8 Balls of Curves.- 3.9 The Relative Tree Structure.- 4 Valuations Through Puiseux Series.- 4.1 Puiseux Series and Valuations.- 4.2 Tree Structure.- 4.3 Galois Action.- 4.4 A Tale of Two Trees.- 4.5 The Berkovich Projective Line.- 4.6 The Bruhat-Tits Metric.- 4.7 Dictionary.- 5 Topologies.- 5.1 The Weak Topology.- 5.2 The Strong Topology on V.- 5.3 The Strong Topology on Vqm.- 5.4 Thin Topologies.- 5.5 The Zariski Topology.- 5.6 The Hausdorff-Zariski Topology.- 5.7 Comparison of Topologies.- 6 The Universal Dual Graph.- 6.1 Nonmetric Tree Structure.- 6.2 Infinitely Near Points.- 6.3 Parameterization and Multiplicity.- 6.4 The Isomorphism.- 6.5 Proof of the Isomorphism.- 6.6 Applications.- 6.7 The Dual Graph of the Minimal Desingularization.- 6.8 The Relative Tree Structure.- 7 Tree Measures.- 7.1 Outline.- 7.2 More on the Weak Topology.- 7.3 Borel Measures.- 7.4 Functions of Bounded Variation.- 7.5 Representation Theorem I.- 7.6 Complex Tree Potentials.- 7.7 Representation Theorem II.- 7.8 Atomic Measures.- 7.9 Positive Tree Potentials.- 7.10 Weak Topologies and Compactness.- 7.11 Restrictions to Subtrees.- 7.12 Inner Products.- 8 Applications of the Tree Analysis.- 8.1Zariski's Theory of Complete Ideals.- 8.2 The Voûte étoilée.- A Infinitely Singular Valuations.- A.1 Characterizations.- A.2 Constructions.- B The Tangent Space at a Divisorial Valuation.- C Classification.- D Combinatorics of Plane Curve Singularities.- D.1 Zariski's Terminology for Plane Curve Singularities.- D.2 The Eggers Tree.- E.1 Completeness.- E.2 The Residue Field.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826