182,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
91 °P sammeln
  • Gebundenes Buch

Chemistry as an exact science.- Computational bottlenecks in molecular orbital calculations.- Variational transition state theory calculations of concerted hydrogen atom tunneling in water clusters and formaldehyde / water clusters.- Double many-body expansion potential energy surface for O4(3A), dynamics of the O(3P) + O3(1A1) reaction, and second virial coefficients of molecular oxygen.- The self-consistent reaction field model for molecular computations in solution.- New symmetry theorems and similarity rules for transition structures.- A topological analysis of macromolecular folding…mehr

Produktbeschreibung
Chemistry as an exact science.- Computational bottlenecks in molecular orbital calculations.- Variational transition state theory calculations of concerted hydrogen atom tunneling in water clusters and formaldehyde / water clusters.- Double many-body expansion potential energy surface for O4(3A), dynamics of the O(3P) + O3(1A1) reaction, and second virial coefficients of molecular oxygen.- The self-consistent reaction field model for molecular computations in solution.- New symmetry theorems and similarity rules for transition structures.- A topological analysis of macromolecular folding patterns.- Molecular mechanics.- Predicting the three-dimensional structure of proteins by homology-based model building.- Understanding chemical reactivity through the intersecting-state model.- The states of an electron pair and photochemical reactivity.- Ab-initio modelling of chemical reactivity using MC-SCF and VB methods.- The supra-supra mechanism of forbidden and allowed cycloaddition reactions: an analysis a VB model.- Excited state proton transfer reactions.- An exploratory study to correlate experimental and theoretical acidities of organic molecules.- Molecules with "volcanic" ground hypersurfaces. Structure, stability and energetics.- Molecular hydrogen as a ligand in transition metal complexes.- Molecular orbital studies of reductive elimination reactions.- Laboratory projects in computational organic chemistry.