Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
I. Teil. Allgemeine Theorie der Laplace-Transformation..- 1. Kapitel: Grundbegriffe der Funktionalanalysis.- 2. Kapitel: Geschichtliches über die Laplace-Transformation.- 3. Kapitel: Definition und analytische Eigenschaften der Laplace-Transformation.- 4. Kapitel: Allgemeine funktionentheoretische Eigenschaften der l-Funktionen.- 5. Kapitel: Die im Unendlichen regulären l-Funktionen.- 6. Kapitel: Die komplexe Umkehrformel der Laplace-Transformation.- 7. Kapitel: Andere Umkehrformeln für die Laplace-Transformation.- 8. Kapitel: Die Abbildung der fundamentalen Operationen an Funktionen.- II. Teil. Reihenentwicklungen.- 9. Kapitel: Die Übertragung von Reihenentwicklungen.- III. Teil. Asymptotisches Verhalten von Funktionen.- 10. Kapitel: Abelsche und Taubersche Sätze.- 11. Kapitel: Ein allgemeines Prinzip der asymptotischen Entwicklung und die verschiedenen Arten von Asymptotik.- 12. Kapitel: Abelsche Asymptotik.- 13. Kapitel: Taubersche Asymptotik.- 14. Kapitel: Indirekte Abelsche Asymptotik.- IV. Teil. Integralgleichungen.- 15. Kapitel: Integralgleichungen vom reellen Faltungstypus.- 16. Kapitel: Funktionalrelationen mit Faltungsintegralen, insbesondere transzendente Additionstheoreme.- 17. Kapitel: Integralgleichungen und Funktionalrelationen vom komplexen Faltungstypus.- V. Teil. Differentialgleichungen.- 18. Kapitel: Gewöhnliche Differentialgleichungen.- 19. Kapitel: Allgemeines über die Behandlung von partiellen Differentialgleichungen durch Funktionaltransformationen.- 20. Kapitel: Die Wärmeleitungsgleichung (parabolischer Typ).- 21. Kapitel: Die Telegraphengleichung und die Wellengleichung (hyperbolischer Typ).- 22. Kapitel: Die Potentialgleichung (elliptischer Typ).- 23. Kapitel: Gleichungen mit variablen Koeffizienten.- 24. Kapitel: Die Beziehungen zumHeaviside-Kalkül und zur sog. funktionentheoretischen Methode.- 25. Kapitel: Huygenssches und Eulersches Prinzip.- 1. Einige Hilfssätze der Analysis.- 2. Tabelle von Laplace-Transformationen.- Historische Anmerkungen.
I. Teil. Allgemeine Theorie der Laplace-Transformation..- 1. Kapitel: Grundbegriffe der Funktionalanalysis.- 2. Kapitel: Geschichtliches über die Laplace-Transformation.- 3. Kapitel: Definition und analytische Eigenschaften der Laplace-Transformation.- 4. Kapitel: Allgemeine funktionentheoretische Eigenschaften der l-Funktionen.- 5. Kapitel: Die im Unendlichen regulären l-Funktionen.- 6. Kapitel: Die komplexe Umkehrformel der Laplace-Transformation.- 7. Kapitel: Andere Umkehrformeln für die Laplace-Transformation.- 8. Kapitel: Die Abbildung der fundamentalen Operationen an Funktionen.- II. Teil. Reihenentwicklungen.- 9. Kapitel: Die Übertragung von Reihenentwicklungen.- III. Teil. Asymptotisches Verhalten von Funktionen.- 10. Kapitel: Abelsche und Taubersche Sätze.- 11. Kapitel: Ein allgemeines Prinzip der asymptotischen Entwicklung und die verschiedenen Arten von Asymptotik.- 12. Kapitel: Abelsche Asymptotik.- 13. Kapitel: Taubersche Asymptotik.- 14. Kapitel: Indirekte Abelsche Asymptotik.- IV. Teil. Integralgleichungen.- 15. Kapitel: Integralgleichungen vom reellen Faltungstypus.- 16. Kapitel: Funktionalrelationen mit Faltungsintegralen, insbesondere transzendente Additionstheoreme.- 17. Kapitel: Integralgleichungen und Funktionalrelationen vom komplexen Faltungstypus.- V. Teil. Differentialgleichungen.- 18. Kapitel: Gewöhnliche Differentialgleichungen.- 19. Kapitel: Allgemeines über die Behandlung von partiellen Differentialgleichungen durch Funktionaltransformationen.- 20. Kapitel: Die Wärmeleitungsgleichung (parabolischer Typ).- 21. Kapitel: Die Telegraphengleichung und die Wellengleichung (hyperbolischer Typ).- 22. Kapitel: Die Potentialgleichung (elliptischer Typ).- 23. Kapitel: Gleichungen mit variablen Koeffizienten.- 24. Kapitel: Die Beziehungen zumHeaviside-Kalkül und zur sog. funktionentheoretischen Methode.- 25. Kapitel: Huygenssches und Eulersches Prinzip.- 1. Einige Hilfssätze der Analysis.- 2. Tabelle von Laplace-Transformationen.- Historische Anmerkungen.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826