Theory of Lift
Introductory Computational Aerodynamics in Matlab/Octave
Herausgeber: Belobaba, Peter; Seabridge, Allan; Langton, Roy; Cooper, Jonathan
Theory of Lift
Introductory Computational Aerodynamics in Matlab/Octave
Herausgeber: Belobaba, Peter; Seabridge, Allan; Langton, Roy; Cooper, Jonathan
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave takes the reader conceptually through from the fundamental mechanics of lift to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries.
The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that…mehr
- Keith Antony RigbyAircraft Systems Integration of Air-Launched Weapons125,99 €
- Dominic J. DistonComputational Modelling and Simulation of Aircraft and the Environment, Volume 284,99 €
- Peter J. SwattonThe Principles of Flight for Pilots85,99 €
- András SóbesterAircraft Aerodynamic Design138,99 €
- David AllertonPrinciples of Flight Simulation157,99 €
- System Health Management273,99 €
- Sustainable Aviation Technology and Operations76,99 €
-
-
-
The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods.
This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages.
Key features:
Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization.
Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave.
Companion website (www.wiley.com/go/mcbain) hosting codes and solutions.
Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Aerospace Series (PEP)
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 352
- Erscheinungstermin: 6. Juli 2012
- Englisch
- Abmessung: 251mm x 174mm x 22mm
- Gewicht: 670g
- ISBN-13: 9781119952282
- ISBN-10: 111995228X
- Artikelnr.: 35063429
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Aerospace Series (PEP)
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 352
- Erscheinungstermin: 6. Juli 2012
- Englisch
- Abmessung: 251mm x 174mm x 22mm
- Gewicht: 670g
- ISBN-13: 9781119952282
- ISBN-10: 111995228X
- Artikelnr.: 35063429
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
1, Source 51 3.1.7 Example: k =
2, Doublet 52 3.2 Multiplication by a Complex Constant 53 3.2.1 Example: w = const., Uniform Stream with Arbitrary Direction 53 3.2.2 Example: w = i/z, Vortex 54 3.2.3 Example: Polar Components 54 3.3 Linear Combinations of Complex Velocities 54 3.3.1 Example: Circular Obstacle in a Stream 54 3.4 Transforming the Whole Velocity Field 56 3.4.1 Translating the Whole Velocity Field 56 3.4.2 Example: Doublet as the Sum of a Source and Sink 56 3.4.3 Rotating the Whole Velocity Field 56 3.5 Circulation and Outflow 57 3.5.1 Curve-integrals in Plane Ideal Flow 57 3.5.2 Example: Numerical Line-integrals for Circulation and Outflow 58 3.5.3 Closed Circuits 59 3.5.4 Example: Powers of z and Circles around the Origin 60 3.6 More on the Scalar Potential and Stream Function 61 3.6.1 The Scalar Potential and Irrotational Flow 61 3.6.2 The Stream Function and Divergence-free Flow 62 3.7 Lift 62 3.7.1 Blasius's Theorem 62 3.7.2 The Kutta-Joukowsky Theorem 63 3.8 Exercises 64 3.9 Further Reading 65 References 66 4 Conformal Mapping 67 4.1 Composition of Analytic Functions 67 4.2 Mapping with Powers of
68 4.2.1 Example: Square Mapping 68 4.2.2 Conforming Mapping by Contouring the Stream Function 69 4.2.3 Example: Two-thirds Power Mapping 69 4.2.4 Branch Cuts 70 4.2.5 Other Powers 71 4.3 Joukowsky's Transformation 71 4.3.1 Unit Circle from a Straight Line Segment 71 4.3.2 Uniform Flow and Flow over a Circle 72 4.3.3 Thin Flat Plate at Nonzero Incidence 73 4.3.4 Flow over the Thin Flat Plate with Circulation 74 4.3.5 Joukowsky Aerofoils 75 4.4 Exercises 75 4.5 Further Reading 78 References 78 5 Flat Plate Aerodynamics 79 5.1 Plane Ideal Flow over a Thin Flat Plate 79 5.1.1 Stagnation Points 80 5.1.2 The Kutta-Joukowsky Condition 80 5.1.3 Lift on a Thin Flat Plate 81 5.1.4 Surface Speed Distribution 82 5.1.5 Pressure Distribution 83 5.1.6 Distribution of Circulation 84 5.1.7 Thin Flat Plate as Vortex Sheet 85 5.2 Application of Thin Aerofoil Theory to the Flat Plate 87 5.2.1 Thin Aerofoil Theory 87 5.2.2 Vortex Sheet along the Chord 87 5.2.3 Changing the Variable of Integration 88 5.2.4 Glauert's Integral 88 5.2.5 The Kutta-Joukowsky Condition 89 5.2.6 Circulation and Lift 89 5.3 Aerodynamic Moment 89 5.3.1 Centre of Pressure and Aerodynamic Centre 90 5.4 Exercises 90 5.5 Further Reading 91 References 91 6 Thin Wing Sections 93 6.1 Thin Aerofoil Analysis 93 6.1.1 Vortex Sheet along the Camber Line 93 6.1.2 The Boundary Condition 93 6.1.3 Linearization 94 6.1.4 Glauert's Transformation 95 6.1.5 Glauert's Expansion 95 6.1.6 Fourier Cosine Decomposition of the Camber Line Slope 97 6.2 Thin Aerofoil Aerodynamics 98 6.2.1 Circulation and Lift 98 6.2.2 Pitching Moment about the Leading Edge 99 6.2.3 Aerodynamic Centre 100 6.2.4 Summary 101 6.3 Analytical Evaluation of Thin Aerofoil Integrals 101 6.3.1 Example: the NACA Four-digit Wing Sections 104 6.4 Numerical Thin Aerofoil Theory 105 6.5 Exercises 109 6.6 Further Reading 109 References 109 7 Lumped Vortex Elements 111 7.1 The Thin Flat Plate at Arbitrary Incidence, Again 111 7.1.1 Single Vortex 111 7.1.2 The Collocation Point 111 7.1.3 Lumped Vortex Model of the Thin Flat Plate 112 7.2 Using Two Lumped Vortices along the Chord 114 7.2.1 Postprocessing 116 7.3 Generalization to Multiple Lumped Vortex Panels 117 7.3.1 Postprocessing 117 7.4 General Considerations on Discrete Singularity Methods 117 7.5 Lumped Vortex Elements for Thin Aerofoils 119 7.5.1 Panel Chains for Camber Lines 119 7.5.2 Implementation in Octave 121 7.5.3 Comparison with Thin Aerofoil Theory 122 7.6 Disconnected Aerofoils 123 7.6.1 Other Applications 124 7.7 Exercises 125 7.8 Further Reading 125 References 126 8 Panel Methods for Plane Flow 127 8.1 Development of the CUSSSP Program 127 8.1.1 The Singularity Elements 127 8.1.2 Discretizing the Geometry 129 8.1.3 The Influence Matrix 131 8.1.4 The Right-hand Side 132 8.1.5 Solving the Linear System 134 8.1.6 Postprocessing 135 8.2 Exercises 137 8.2.1 Projects 138 8.3 Further Reading 139 References 139 8.4 Conclusion to Part I: The Origin of Lift 139 Part Two Three-dimensional Ideal Aerodynamics 9 Finite Wings and Three-Dimensional Flow 143 9.1 Wings of Finite Span 143 9.1.1 Empirical Effect of Finite Span on Lift 143 9.1.2 Finite Wings and Three-dimensional Flow 143 9.2 Three-Dimensional Flow 145 9.2.1 Three-dimensional Cartesian Coordinate System 145 9.2.2 Three-dimensional Governing Equations 145 9.3 Vector Notation and Identities 145 9.3.1 Addition and Scalar Multiplication of Vectors 145 9.3.2 Products of Vectors 146 9.3.3 Vector Derivatives 147 9.3.4 Integral Theorems for Vector Derivatives 148 9.4 The Equations Governing Three-Dimensional Flow 149 9.4.1 Conservation of Mass and the Continuity Equation 149 9.4.2 Newton's Law and Euler's Equation 149 9.5 Circulation 150 9.5.1 Definition of Circulation in Three Dimensions 150 9.5.2 The Persistence of Circulation 151 9.5.3 Circulation and Vorticity 151 9.5.4 Rotational Form of Euler's Equation 153 9.5.5 Steady Irrotational Motion 153 9.6 Exercises 154 9.7 Further Reading 155 References 155 10 Vorticity and Vortices 157 10.1 Streamlines, Stream Tubes, and Stream Filaments 157 10.1.1 Streamlines 157 10.1.2 Stream Tubes and Stream Filaments 158 10.2 Vortex Lines, Vortex Tubes, and Vortex Filaments 159 10.2.1 Strength of Vortex Tubes and Filaments 159 10.2.2 Kinematic Properties of Vortex Tubes 159 10.3 Helmholtz's Theorems 159 10.3.1 'Vortex Tubes Move with the Flow' 159 10.3.2 'The Strength of a Vortex Tube is Constant' 160 10.4 Line Vortices 160 10.4.1 The Two-dimensional Vortex 160 10.4.2 Arbitrarily Oriented Rectilinear Vortex Filaments 160 10.5 Segmented Vortex Filaments 161 10.5.1 The Biot-Savart Law 161 10.5.2 Rectilinear Vortex Filaments 162 10.5.3 Finite Rectilinear Vortex Filaments 164 10.5.4 Infinite Straight Line Vortices 164 10.5.5 Semi-infinite Straight Line Vortex 164 10.5.6 Truncating Infinite Vortex Segments 165 10.5.7 Implementing Line Vortices in Octave 165 10.6 Exercises 166 10.7 Further Reading 167 References 167 11 Lifting Line Theory 169 11.1 Basic Assumptions of Lifting Line Theory 169 11.2 The Lifting Line, Horseshoe Vortices, and the Wake 169 11.2.1 Deductions from Vortex Theorems 169 11.2.2 Deductions from the Wing Pressure Distribution 170 11.2.3 The Lifting Line Model of Air Flow 170 11.2.4 Horseshoe Vortex 170 11.2.5 Continuous Trailing Vortex Sheet 171 11.2.6 The Form of the Wake 172 11.3 The Effect of Downwash 173 11.3.1 Effect on the Angle of Incidence: Induced Incidence 173 11.3.2 Effect on the Aerodynamic Force: Induced Drag 174 11.4 The Lifting Line Equation 174 11.4.1 Glauert's Solution of the Lifting Line Equation 175 11.4.2 Wing Properties in Terms of Glauert's Expansion 176 11.5 The Elliptic Lift Loading 178 11.5.1 Properties of the Elliptic Lift Loading 179 11.6 Lift-Incidence Relation 180 11.6.1 Linear Lift-Incidence Relation 181 11.7 Realizing the Elliptic Lift Loading 182 11.7.1 Corrections to the Elliptic Loading Approximation 182 11.8 Exercises 182 11.9 Further Reading 183 References 183 12 Nonelliptic Lift Loading 185 12.1 Solving the Lifting Line Equation 185 12.1.1 The Sectional Lift-Incidence Relation 185 12.1.2 Linear Sectional Lift-Incidence Relation 185 12.1.3 Finite Approximation: Truncation and Collocation 185 12.1.4 Computer Implementation 187 12.1.5 Example: a Rectangular Wing 187 12.2 Numerical Convergence 188 12.3 Symmetric Spanwise Loading 189 12.3.1 Example: Exploiting Symmetry 191 12.4 Exercises 192 References 192 13 Lumped Horseshoe Elements 193 13.1 A Single Horseshoe Vortex 193 13.1.1 Induced Incidence of the Lumped Horseshoe Element 195 13.2 Multiple Horseshoes along the Span 195 13.2.1 A Finite-step Lifting Line in Octave 197 13.3 An Improved Discrete Horseshoe Model 200 13.4 Implementing Horseshoe Vortices in Octave 203 13.4.1 Example: Yawed Horseshoe Vortex Coefficients 205 13.5 Exercises 206 13.6 Further Reading 207 References 207 14 The Vortex Lattice Method 209 14.1 Meshing the Mean Lifting Surface of a Wing 209 14.1.1 Plotting the Mesh of a Mean Lifting Surface 210 14.2 A Vortex Lattice Method 212 14.2.1 The Vortex Lattice Equations 213 14.2.2 Unit Normals to the Vortex-lattice 215 14.2.3 Spanwise Symmetry 215 14.2.4 Postprocessing Vortex Lattice Methods 215 14.3 Examples of Vortex Lattice Calculations 216 14.3.1 Campbell's Flat Swept Tapered Wing 216 14.3.2 Bertin's Flat Swept Untapered Wing 218 14.3.3 Spanwise and Chordwise Refinement 219 14.4 Exercises 220 14.5 Further Reading 221 14.5.1 Three-dimensional Panel Methods 222 References 222 Part Three Nonideal Flow in Aerodynamics 15 Viscous Flow 225 15.1 Cauchy's First Law of Continuum Mechanics 225 15.2 Rheological Constitutive Equations 227 15.2.1 Perfect Fluid 227 15.2.2 Linearly Viscous Fluid 227 15.3 The Navier-Stokes Equations 228 15.4 The No-Slip Condition and the Viscous Boundary Layer 228 15.5 Unidirectional Flows 229 15.5.1 Plane Couette and Poiseuille Flows 229 15.6 A Suddenly Sliding Plate 230 15.6.1 Solution by Similarity Variable 230 15.6.2 The Diffusion of Vorticity 233 15.7 Exercises 234 15.8 Further Reading 234 References 235 16 Boundary Layer Equations 237 16.1 The Boundary Layer over a Flat Plate 237 16.1.1 Scales in the Conservation of Mass 237 16.1.2 Scales in the Streamwise Momentum Equation 238 16.1.3 The Reynolds Number 239 16.1.4 Pressure in the Boundary Layer 239 16.1.5 The Transverse Momentum Balance 239 16.1.6 The Boundary Layer Momentum Equation 240 16.1.7 Pressure and External Tangential Velocity 241 16.1.8 Application to Curved Surfaces 241 16.2 Momentum Integral Equation 241 16.3 Local Boundary Layer Parameters 243 16.3.1 The Displacement and Momentum Thicknesses 243 16.3.2 The Skin Friction Coefficient 243 16.3.3 Example: Three Boundary Layer Profiles 244 16.4 Exercises 248 16.5 Further Reading 249 References 249 17 Laminar Boundary Layers 251 17.1 Boundary Layer Profile Curvature 251 17.1.1 Pressure Gradient and Boundary Layer Thickness 252 17.2 Pohlhausen's Quartic Profiles 252 17.3 Thwaites's Method for Laminar Boundary Layers 254 17.3.1 F(
)
0.45
6
255 17.3.2 Correlations for Shape Factor and Skin Friction 256 17.3.3 Example: Zero Pressure Gradient 256 17.3.4 Example: Laminar Separation from a Circular Cylinder 257 17.4 Exercises 260 17.5 Further Reading 261 References 262 18 Compressibility 263 18.1 Steady-State Conservation of Mass 263 18.2 Longitudinal Variation of Stream Tube Section 265 18.2.1 The Design of Supersonic Nozzles 266 18.3 Perfect Gas Thermodynamics 266 18.3.1 Thermal and Caloric Equations of State 266 18.3.2 The First Law of Thermodynamics 267 18.3.3 The Isochoric and Isobaric Specific Heat Coefficients 267 18.3.4 Isothermal and Adiabatic Processes 267 18.3.5 Adiabatic Expansion 268 18.3.6 The Speed of Sound and Temperature 269 18.3.7 The Speed of Sound and the Speed 269 18.3.8 Thermodynamic Characteristics of Air 270 18.3.9 Example: Stagnation Temperature 270 18.4 Exercises 270 18.5 Further Reading 271 References 271 19 Linearized Compressible Flow 273 19.1 The Nonlinearity of the Equation for the Potential 273 19.2 Small Disturbances to the Free-Stream 274 19.3 The Uniform Free-Stream 275 19.4 The Disturbance Potential 275 19.5 Prandtl-Glauert Transformation 276 19.5.1 Fundamental Linearized Compressible Flows 277 19.5.2 The Speed of Sound 278 19.6 Application of the Prandtl-Glauert Rule 279 19.6.1 Transforming the Geometry 279 19.6.2 Computing Aerodynamical Forces 280 19.6.3 The Prandlt-Glauert Rule in Two Dimensions 282 19.6.4 The Critical Mach Number 284 19.7 Sweep 284 19.8 Exercises 285 19.9 Further Reading 285 References 286 Appendix A Notes on Octave Programming 287 A. 1 Introduction 287 A. 2 Vectorization 287 A.2. 1 Iterating Explicitly 288 A.2. 2 Preallocating Memory 288 A.2. 3 Vectorizing Function Calls 288 A.2. 4 Many Functions Act Elementwise on Arrays 289 A.2. 5 Functions Primarily Defined for Arrays 289 A.2. 6 Elementwise Arithmetic with Single Numbers 289 A.2. 7 Elementwise Arithmetic between Arrays 290 A.2. 8 Vector and Matrix Multiplication 290 A. 3 Generating Arrays 290 A.3. 1 Creating Tables with bsxfun 290 A. 4 Indexing 291 A.4. 1 Indexing by Logical Masks 291 A.4. 2 Indexing Numerically 291 A. 5 Just-in-Time Compilation 291 A. 6 Further Reading 292 References 292 Glossary 293 Nomenclature 305 Index 309
1, Source 51 3.1.7 Example: k =
2, Doublet 52 3.2 Multiplication by a Complex Constant 53 3.2.1 Example: w = const., Uniform Stream with Arbitrary Direction 53 3.2.2 Example: w = i/z, Vortex 54 3.2.3 Example: Polar Components 54 3.3 Linear Combinations of Complex Velocities 54 3.3.1 Example: Circular Obstacle in a Stream 54 3.4 Transforming the Whole Velocity Field 56 3.4.1 Translating the Whole Velocity Field 56 3.4.2 Example: Doublet as the Sum of a Source and Sink 56 3.4.3 Rotating the Whole Velocity Field 56 3.5 Circulation and Outflow 57 3.5.1 Curve-integrals in Plane Ideal Flow 57 3.5.2 Example: Numerical Line-integrals for Circulation and Outflow 58 3.5.3 Closed Circuits 59 3.5.4 Example: Powers of z and Circles around the Origin 60 3.6 More on the Scalar Potential and Stream Function 61 3.6.1 The Scalar Potential and Irrotational Flow 61 3.6.2 The Stream Function and Divergence-free Flow 62 3.7 Lift 62 3.7.1 Blasius's Theorem 62 3.7.2 The Kutta-Joukowsky Theorem 63 3.8 Exercises 64 3.9 Further Reading 65 References 66 4 Conformal Mapping 67 4.1 Composition of Analytic Functions 67 4.2 Mapping with Powers of
68 4.2.1 Example: Square Mapping 68 4.2.2 Conforming Mapping by Contouring the Stream Function 69 4.2.3 Example: Two-thirds Power Mapping 69 4.2.4 Branch Cuts 70 4.2.5 Other Powers 71 4.3 Joukowsky's Transformation 71 4.3.1 Unit Circle from a Straight Line Segment 71 4.3.2 Uniform Flow and Flow over a Circle 72 4.3.3 Thin Flat Plate at Nonzero Incidence 73 4.3.4 Flow over the Thin Flat Plate with Circulation 74 4.3.5 Joukowsky Aerofoils 75 4.4 Exercises 75 4.5 Further Reading 78 References 78 5 Flat Plate Aerodynamics 79 5.1 Plane Ideal Flow over a Thin Flat Plate 79 5.1.1 Stagnation Points 80 5.1.2 The Kutta-Joukowsky Condition 80 5.1.3 Lift on a Thin Flat Plate 81 5.1.4 Surface Speed Distribution 82 5.1.5 Pressure Distribution 83 5.1.6 Distribution of Circulation 84 5.1.7 Thin Flat Plate as Vortex Sheet 85 5.2 Application of Thin Aerofoil Theory to the Flat Plate 87 5.2.1 Thin Aerofoil Theory 87 5.2.2 Vortex Sheet along the Chord 87 5.2.3 Changing the Variable of Integration 88 5.2.4 Glauert's Integral 88 5.2.5 The Kutta-Joukowsky Condition 89 5.2.6 Circulation and Lift 89 5.3 Aerodynamic Moment 89 5.3.1 Centre of Pressure and Aerodynamic Centre 90 5.4 Exercises 90 5.5 Further Reading 91 References 91 6 Thin Wing Sections 93 6.1 Thin Aerofoil Analysis 93 6.1.1 Vortex Sheet along the Camber Line 93 6.1.2 The Boundary Condition 93 6.1.3 Linearization 94 6.1.4 Glauert's Transformation 95 6.1.5 Glauert's Expansion 95 6.1.6 Fourier Cosine Decomposition of the Camber Line Slope 97 6.2 Thin Aerofoil Aerodynamics 98 6.2.1 Circulation and Lift 98 6.2.2 Pitching Moment about the Leading Edge 99 6.2.3 Aerodynamic Centre 100 6.2.4 Summary 101 6.3 Analytical Evaluation of Thin Aerofoil Integrals 101 6.3.1 Example: the NACA Four-digit Wing Sections 104 6.4 Numerical Thin Aerofoil Theory 105 6.5 Exercises 109 6.6 Further Reading 109 References 109 7 Lumped Vortex Elements 111 7.1 The Thin Flat Plate at Arbitrary Incidence, Again 111 7.1.1 Single Vortex 111 7.1.2 The Collocation Point 111 7.1.3 Lumped Vortex Model of the Thin Flat Plate 112 7.2 Using Two Lumped Vortices along the Chord 114 7.2.1 Postprocessing 116 7.3 Generalization to Multiple Lumped Vortex Panels 117 7.3.1 Postprocessing 117 7.4 General Considerations on Discrete Singularity Methods 117 7.5 Lumped Vortex Elements for Thin Aerofoils 119 7.5.1 Panel Chains for Camber Lines 119 7.5.2 Implementation in Octave 121 7.5.3 Comparison with Thin Aerofoil Theory 122 7.6 Disconnected Aerofoils 123 7.6.1 Other Applications 124 7.7 Exercises 125 7.8 Further Reading 125 References 126 8 Panel Methods for Plane Flow 127 8.1 Development of the CUSSSP Program 127 8.1.1 The Singularity Elements 127 8.1.2 Discretizing the Geometry 129 8.1.3 The Influence Matrix 131 8.1.4 The Right-hand Side 132 8.1.5 Solving the Linear System 134 8.1.6 Postprocessing 135 8.2 Exercises 137 8.2.1 Projects 138 8.3 Further Reading 139 References 139 8.4 Conclusion to Part I: The Origin of Lift 139 Part Two Three-dimensional Ideal Aerodynamics 9 Finite Wings and Three-Dimensional Flow 143 9.1 Wings of Finite Span 143 9.1.1 Empirical Effect of Finite Span on Lift 143 9.1.2 Finite Wings and Three-dimensional Flow 143 9.2 Three-Dimensional Flow 145 9.2.1 Three-dimensional Cartesian Coordinate System 145 9.2.2 Three-dimensional Governing Equations 145 9.3 Vector Notation and Identities 145 9.3.1 Addition and Scalar Multiplication of Vectors 145 9.3.2 Products of Vectors 146 9.3.3 Vector Derivatives 147 9.3.4 Integral Theorems for Vector Derivatives 148 9.4 The Equations Governing Three-Dimensional Flow 149 9.4.1 Conservation of Mass and the Continuity Equation 149 9.4.2 Newton's Law and Euler's Equation 149 9.5 Circulation 150 9.5.1 Definition of Circulation in Three Dimensions 150 9.5.2 The Persistence of Circulation 151 9.5.3 Circulation and Vorticity 151 9.5.4 Rotational Form of Euler's Equation 153 9.5.5 Steady Irrotational Motion 153 9.6 Exercises 154 9.7 Further Reading 155 References 155 10 Vorticity and Vortices 157 10.1 Streamlines, Stream Tubes, and Stream Filaments 157 10.1.1 Streamlines 157 10.1.2 Stream Tubes and Stream Filaments 158 10.2 Vortex Lines, Vortex Tubes, and Vortex Filaments 159 10.2.1 Strength of Vortex Tubes and Filaments 159 10.2.2 Kinematic Properties of Vortex Tubes 159 10.3 Helmholtz's Theorems 159 10.3.1 'Vortex Tubes Move with the Flow' 159 10.3.2 'The Strength of a Vortex Tube is Constant' 160 10.4 Line Vortices 160 10.4.1 The Two-dimensional Vortex 160 10.4.2 Arbitrarily Oriented Rectilinear Vortex Filaments 160 10.5 Segmented Vortex Filaments 161 10.5.1 The Biot-Savart Law 161 10.5.2 Rectilinear Vortex Filaments 162 10.5.3 Finite Rectilinear Vortex Filaments 164 10.5.4 Infinite Straight Line Vortices 164 10.5.5 Semi-infinite Straight Line Vortex 164 10.5.6 Truncating Infinite Vortex Segments 165 10.5.7 Implementing Line Vortices in Octave 165 10.6 Exercises 166 10.7 Further Reading 167 References 167 11 Lifting Line Theory 169 11.1 Basic Assumptions of Lifting Line Theory 169 11.2 The Lifting Line, Horseshoe Vortices, and the Wake 169 11.2.1 Deductions from Vortex Theorems 169 11.2.2 Deductions from the Wing Pressure Distribution 170 11.2.3 The Lifting Line Model of Air Flow 170 11.2.4 Horseshoe Vortex 170 11.2.5 Continuous Trailing Vortex Sheet 171 11.2.6 The Form of the Wake 172 11.3 The Effect of Downwash 173 11.3.1 Effect on the Angle of Incidence: Induced Incidence 173 11.3.2 Effect on the Aerodynamic Force: Induced Drag 174 11.4 The Lifting Line Equation 174 11.4.1 Glauert's Solution of the Lifting Line Equation 175 11.4.2 Wing Properties in Terms of Glauert's Expansion 176 11.5 The Elliptic Lift Loading 178 11.5.1 Properties of the Elliptic Lift Loading 179 11.6 Lift-Incidence Relation 180 11.6.1 Linear Lift-Incidence Relation 181 11.7 Realizing the Elliptic Lift Loading 182 11.7.1 Corrections to the Elliptic Loading Approximation 182 11.8 Exercises 182 11.9 Further Reading 183 References 183 12 Nonelliptic Lift Loading 185 12.1 Solving the Lifting Line Equation 185 12.1.1 The Sectional Lift-Incidence Relation 185 12.1.2 Linear Sectional Lift-Incidence Relation 185 12.1.3 Finite Approximation: Truncation and Collocation 185 12.1.4 Computer Implementation 187 12.1.5 Example: a Rectangular Wing 187 12.2 Numerical Convergence 188 12.3 Symmetric Spanwise Loading 189 12.3.1 Example: Exploiting Symmetry 191 12.4 Exercises 192 References 192 13 Lumped Horseshoe Elements 193 13.1 A Single Horseshoe Vortex 193 13.1.1 Induced Incidence of the Lumped Horseshoe Element 195 13.2 Multiple Horseshoes along the Span 195 13.2.1 A Finite-step Lifting Line in Octave 197 13.3 An Improved Discrete Horseshoe Model 200 13.4 Implementing Horseshoe Vortices in Octave 203 13.4.1 Example: Yawed Horseshoe Vortex Coefficients 205 13.5 Exercises 206 13.6 Further Reading 207 References 207 14 The Vortex Lattice Method 209 14.1 Meshing the Mean Lifting Surface of a Wing 209 14.1.1 Plotting the Mesh of a Mean Lifting Surface 210 14.2 A Vortex Lattice Method 212 14.2.1 The Vortex Lattice Equations 213 14.2.2 Unit Normals to the Vortex-lattice 215 14.2.3 Spanwise Symmetry 215 14.2.4 Postprocessing Vortex Lattice Methods 215 14.3 Examples of Vortex Lattice Calculations 216 14.3.1 Campbell's Flat Swept Tapered Wing 216 14.3.2 Bertin's Flat Swept Untapered Wing 218 14.3.3 Spanwise and Chordwise Refinement 219 14.4 Exercises 220 14.5 Further Reading 221 14.5.1 Three-dimensional Panel Methods 222 References 222 Part Three Nonideal Flow in Aerodynamics 15 Viscous Flow 225 15.1 Cauchy's First Law of Continuum Mechanics 225 15.2 Rheological Constitutive Equations 227 15.2.1 Perfect Fluid 227 15.2.2 Linearly Viscous Fluid 227 15.3 The Navier-Stokes Equations 228 15.4 The No-Slip Condition and the Viscous Boundary Layer 228 15.5 Unidirectional Flows 229 15.5.1 Plane Couette and Poiseuille Flows 229 15.6 A Suddenly Sliding Plate 230 15.6.1 Solution by Similarity Variable 230 15.6.2 The Diffusion of Vorticity 233 15.7 Exercises 234 15.8 Further Reading 234 References 235 16 Boundary Layer Equations 237 16.1 The Boundary Layer over a Flat Plate 237 16.1.1 Scales in the Conservation of Mass 237 16.1.2 Scales in the Streamwise Momentum Equation 238 16.1.3 The Reynolds Number 239 16.1.4 Pressure in the Boundary Layer 239 16.1.5 The Transverse Momentum Balance 239 16.1.6 The Boundary Layer Momentum Equation 240 16.1.7 Pressure and External Tangential Velocity 241 16.1.8 Application to Curved Surfaces 241 16.2 Momentum Integral Equation 241 16.3 Local Boundary Layer Parameters 243 16.3.1 The Displacement and Momentum Thicknesses 243 16.3.2 The Skin Friction Coefficient 243 16.3.3 Example: Three Boundary Layer Profiles 244 16.4 Exercises 248 16.5 Further Reading 249 References 249 17 Laminar Boundary Layers 251 17.1 Boundary Layer Profile Curvature 251 17.1.1 Pressure Gradient and Boundary Layer Thickness 252 17.2 Pohlhausen's Quartic Profiles 252 17.3 Thwaites's Method for Laminar Boundary Layers 254 17.3.1 F(
)
0.45
6
255 17.3.2 Correlations for Shape Factor and Skin Friction 256 17.3.3 Example: Zero Pressure Gradient 256 17.3.4 Example: Laminar Separation from a Circular Cylinder 257 17.4 Exercises 260 17.5 Further Reading 261 References 262 18 Compressibility 263 18.1 Steady-State Conservation of Mass 263 18.2 Longitudinal Variation of Stream Tube Section 265 18.2.1 The Design of Supersonic Nozzles 266 18.3 Perfect Gas Thermodynamics 266 18.3.1 Thermal and Caloric Equations of State 266 18.3.2 The First Law of Thermodynamics 267 18.3.3 The Isochoric and Isobaric Specific Heat Coefficients 267 18.3.4 Isothermal and Adiabatic Processes 267 18.3.5 Adiabatic Expansion 268 18.3.6 The Speed of Sound and Temperature 269 18.3.7 The Speed of Sound and the Speed 269 18.3.8 Thermodynamic Characteristics of Air 270 18.3.9 Example: Stagnation Temperature 270 18.4 Exercises 270 18.5 Further Reading 271 References 271 19 Linearized Compressible Flow 273 19.1 The Nonlinearity of the Equation for the Potential 273 19.2 Small Disturbances to the Free-Stream 274 19.3 The Uniform Free-Stream 275 19.4 The Disturbance Potential 275 19.5 Prandtl-Glauert Transformation 276 19.5.1 Fundamental Linearized Compressible Flows 277 19.5.2 The Speed of Sound 278 19.6 Application of the Prandtl-Glauert Rule 279 19.6.1 Transforming the Geometry 279 19.6.2 Computing Aerodynamical Forces 280 19.6.3 The Prandlt-Glauert Rule in Two Dimensions 282 19.6.4 The Critical Mach Number 284 19.7 Sweep 284 19.8 Exercises 285 19.9 Further Reading 285 References 286 Appendix A Notes on Octave Programming 287 A. 1 Introduction 287 A. 2 Vectorization 287 A.2. 1 Iterating Explicitly 288 A.2. 2 Preallocating Memory 288 A.2. 3 Vectorizing Function Calls 288 A.2. 4 Many Functions Act Elementwise on Arrays 289 A.2. 5 Functions Primarily Defined for Arrays 289 A.2. 6 Elementwise Arithmetic with Single Numbers 289 A.2. 7 Elementwise Arithmetic between Arrays 290 A.2. 8 Vector and Matrix Multiplication 290 A. 3 Generating Arrays 290 A.3. 1 Creating Tables with bsxfun 290 A. 4 Indexing 291 A.4. 1 Indexing by Logical Masks 291 A.4. 2 Indexing Numerically 291 A. 5 Just-in-Time Compilation 291 A. 6 Further Reading 292 References 292 Glossary 293 Nomenclature 305 Index 309