- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier werden Halbleiterbauelemente vorgestellt, die in Mobilkommunikationssystemen, in Computern und vielen anderen High-Tech-Geräten verwendet werden. Das ausgezeichnete Handbuch für Ingenieure und andere Praktiker ist auch für Studenten interessant, denn die physikalische und ingenieurtechnische Prinzipien aller Bauelemente werden ausführlich erläutert.
Andere Kunden interessierten sich auch für
- Simon M. Sze (Hrsg.)Modern Semiconductor Device Physics236,99 €
- Ashok K. SharmaAdvanced Semiconductor Memories250,99 €
- Handbook of 3D Integration155,99 €
- Yaguang LianSemiconductor Microchips and Fabrication141,99 €
- Tom MouthaanSemiconductor Devices Explained186,99 €
- Simon M. Sze (Hrsg.)High-Speed Semiconductor Devices342,99 €
- Ashok K. SharmaSemiconductor Memories255,99 €
-
-
-
Hier werden Halbleiterbauelemente vorgestellt, die in Mobilkommunikationssystemen, in Computern und vielen anderen High-Tech-Geräten verwendet werden. Das ausgezeichnete Handbuch für Ingenieure und andere Praktiker ist auch für Studenten interessant, denn die physikalische und ingenieurtechnische Prinzipien aller Bauelemente werden ausführlich erläutert.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- A Wiley-Interscience Publication
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 464
- Erscheinungstermin: 7. März 2002
- Englisch
- Abmessung: 233mm x 166mm x 26mm
- Gewicht: 764g
- ISBN-13: 9780471415411
- ISBN-10: 0471415413
- Artikelnr.: 10527234
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- A Wiley-Interscience Publication
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 464
- Erscheinungstermin: 7. März 2002
- Englisch
- Abmessung: 233mm x 166mm x 26mm
- Gewicht: 764g
- ISBN-13: 9780471415411
- ISBN-10: 0471415413
- Artikelnr.: 10527234
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
KEVIN F. BRENNAN, PhD, is Byer's Professor of Electrical and Computer Engineering and APRIL S. BROWN, PhD, is Professor of Electrical and Computer Engineering in the School of Electrical and Computer Engineering at the Georgia Institute of Technology in Atlanta, Georgia.
PREFACE.
1 OVERVIEW OF SEMICONDUCTOR DEVICE TRENDS.
1.1 Moore's Law and Its Implications.
1.2 Semiconductor Devices for Telecommunications.
1.3 Digital Communications.
2 SEMICONDUCTOR HETEROSTRUCTURES.
2.1 Formation of Heterostructures.
2.2 Modulation Doping.
2.3 Two-Dimensional Subband Transport at Heterointerfaces.
2.4 Strain and Stress at Heterointerfaces.
2.5 Perpendicular Transport in Heterostructures and Superlattices.
2.6 Heterojunction Materials Systems: Intrinsic and Extrinsic Properties.
Problems.
3 HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS.
3.1 Motivation.
3.2 Basics of Heterostructure Field-Effect Transistors.
3.3 Simplified Long-Channel Model of a MODFET.
3.4 Physical Features of Advanced State-of-the-Art MODFETs.
3.5 High-Frequency Performance of MODFETs.
3.6 Materials Properties and Structure Optimization for HFETs.
Problems.
4 HETEROSTRUCTURE BIPOLAR TRANSISTORS.
4.1 Review of Bipolar Junction Transistors.
4.2 Emitter-Base Heterojunction Bipolar Transistors.
4.3 Base Transport Dynamics.
4.4 Nonstationary Transport Effects and Breakdown.
4.5 High-Frequency Performance of HBTs.
4.6 Materials Properties and Structure Optimization for HBTs .
Problems.
5 TRANSFERRED ELECTRON EFFECTS, NEGATIVE DIFFERENTIAL RESISTANCE, AND
DEVICES.
5.1 Introduction.
5.2 k-Space Transfer.
5.3 Real-Space Transfer.
5.4 Consequences of NDR in a Semiconductor.
5.5 Transferred Electron-Effect Oscillators: Gunn Diodes.
5.6 Negative Differential Resistance Transistors.
5.7 IMPATT Diodes.
Problems.
6 RESONANT TUNNELING AND DEVICES.
6.1 Physics of Resonant Tunneling: Qualitative Approach.
6.2 Physics of Resonant Tunneling: Envelope Approximation.
6.3 Inelastic Phonon Scattering Assisted Tunneling: Hopping Conduction.
6.4 Resonant Tunneling Diodes: High-Frequency Applications.
6.5 Resonant Tunneling Diodes: Digital Applications.
6.6 Resonant Tunneling Transistors.
Problems.
7 CMOS: DEVICES AND FUTURE CHALLENGES.
7.1 Why CMOS?
7.2 Basics of Long-Channel MOSFET Operation.
7.3 Short-Channel Effects.
7.4 Scaling Theory.
7.5 Processing Limitations to Continued Miniaturization.
Problems.
8 BEYOND CMOS: FUTURE APPROACHES TO COMPUTING HARDWARE.
8.1 Alternative MOS Device Structures: SOI, Dual-Gate FETs, and SiGe.
8.2 Quantum-Dot Devices and Cellular Automata.
8.3 Molecular Computing.
8.4 Field-Programmable Gate Arrays and Defect-Tolerant Computing.
8.5 Coulomb Blockade and Single-Electron Transistors.
8.6 Quantum Computing.
Problems.
9 MAGNETIC FIELD EFFECTS IN SEMICONDUCTORS.
9.1 Landau Levels.
9.2 Classical Hall Effect.
9.3 Integer Quantum Hall Effect.
9.4 Fractional Quantum Hall Effect.
9.5 Shubnikov-de Haas Oscillations.
Problems.
REFERENCES.
APPENDIX A: PHYSICAL CONSTANTS.
APPENDIX B: BULK MATERIAL PARAMETERS.
Table I: Silicon.
Table II: Ge.
Table III: GaAs.
Table IV: InP.
Table V: InAs.
Table VI: InN.
Table VII: GaN.
Table VIII: SiC.
Table IX: ZnS.
Table X: ZnSe.
Table XI : Al x Ga 1 fx As.
Table XI I : Ga 0:47 In 0:53 As.
Table XIII: Al 0:48 In 0:52 As.
Table XI V: Ga 0:5 In 0:5 P.
Table XV: Hg 0:70 Cd 0:30 Te.
APPENDIX C: HETEROJUNCTION PROPERTIES.
INDEX.
1 OVERVIEW OF SEMICONDUCTOR DEVICE TRENDS.
1.1 Moore's Law and Its Implications.
1.2 Semiconductor Devices for Telecommunications.
1.3 Digital Communications.
2 SEMICONDUCTOR HETEROSTRUCTURES.
2.1 Formation of Heterostructures.
2.2 Modulation Doping.
2.3 Two-Dimensional Subband Transport at Heterointerfaces.
2.4 Strain and Stress at Heterointerfaces.
2.5 Perpendicular Transport in Heterostructures and Superlattices.
2.6 Heterojunction Materials Systems: Intrinsic and Extrinsic Properties.
Problems.
3 HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS.
3.1 Motivation.
3.2 Basics of Heterostructure Field-Effect Transistors.
3.3 Simplified Long-Channel Model of a MODFET.
3.4 Physical Features of Advanced State-of-the-Art MODFETs.
3.5 High-Frequency Performance of MODFETs.
3.6 Materials Properties and Structure Optimization for HFETs.
Problems.
4 HETEROSTRUCTURE BIPOLAR TRANSISTORS.
4.1 Review of Bipolar Junction Transistors.
4.2 Emitter-Base Heterojunction Bipolar Transistors.
4.3 Base Transport Dynamics.
4.4 Nonstationary Transport Effects and Breakdown.
4.5 High-Frequency Performance of HBTs.
4.6 Materials Properties and Structure Optimization for HBTs .
Problems.
5 TRANSFERRED ELECTRON EFFECTS, NEGATIVE DIFFERENTIAL RESISTANCE, AND
DEVICES.
5.1 Introduction.
5.2 k-Space Transfer.
5.3 Real-Space Transfer.
5.4 Consequences of NDR in a Semiconductor.
5.5 Transferred Electron-Effect Oscillators: Gunn Diodes.
5.6 Negative Differential Resistance Transistors.
5.7 IMPATT Diodes.
Problems.
6 RESONANT TUNNELING AND DEVICES.
6.1 Physics of Resonant Tunneling: Qualitative Approach.
6.2 Physics of Resonant Tunneling: Envelope Approximation.
6.3 Inelastic Phonon Scattering Assisted Tunneling: Hopping Conduction.
6.4 Resonant Tunneling Diodes: High-Frequency Applications.
6.5 Resonant Tunneling Diodes: Digital Applications.
6.6 Resonant Tunneling Transistors.
Problems.
7 CMOS: DEVICES AND FUTURE CHALLENGES.
7.1 Why CMOS?
7.2 Basics of Long-Channel MOSFET Operation.
7.3 Short-Channel Effects.
7.4 Scaling Theory.
7.5 Processing Limitations to Continued Miniaturization.
Problems.
8 BEYOND CMOS: FUTURE APPROACHES TO COMPUTING HARDWARE.
8.1 Alternative MOS Device Structures: SOI, Dual-Gate FETs, and SiGe.
8.2 Quantum-Dot Devices and Cellular Automata.
8.3 Molecular Computing.
8.4 Field-Programmable Gate Arrays and Defect-Tolerant Computing.
8.5 Coulomb Blockade and Single-Electron Transistors.
8.6 Quantum Computing.
Problems.
9 MAGNETIC FIELD EFFECTS IN SEMICONDUCTORS.
9.1 Landau Levels.
9.2 Classical Hall Effect.
9.3 Integer Quantum Hall Effect.
9.4 Fractional Quantum Hall Effect.
9.5 Shubnikov-de Haas Oscillations.
Problems.
REFERENCES.
APPENDIX A: PHYSICAL CONSTANTS.
APPENDIX B: BULK MATERIAL PARAMETERS.
Table I: Silicon.
Table II: Ge.
Table III: GaAs.
Table IV: InP.
Table V: InAs.
Table VI: InN.
Table VII: GaN.
Table VIII: SiC.
Table IX: ZnS.
Table X: ZnSe.
Table XI : Al x Ga 1 fx As.
Table XI I : Ga 0:47 In 0:53 As.
Table XIII: Al 0:48 In 0:52 As.
Table XI V: Ga 0:5 In 0:5 P.
Table XV: Hg 0:70 Cd 0:30 Te.
APPENDIX C: HETEROJUNCTION PROPERTIES.
INDEX.
PREFACE.
1 OVERVIEW OF SEMICONDUCTOR DEVICE TRENDS.
1.1 Moore's Law and Its Implications.
1.2 Semiconductor Devices for Telecommunications.
1.3 Digital Communications.
2 SEMICONDUCTOR HETEROSTRUCTURES.
2.1 Formation of Heterostructures.
2.2 Modulation Doping.
2.3 Two-Dimensional Subband Transport at Heterointerfaces.
2.4 Strain and Stress at Heterointerfaces.
2.5 Perpendicular Transport in Heterostructures and Superlattices.
2.6 Heterojunction Materials Systems: Intrinsic and Extrinsic Properties.
Problems.
3 HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS.
3.1 Motivation.
3.2 Basics of Heterostructure Field-Effect Transistors.
3.3 Simplified Long-Channel Model of a MODFET.
3.4 Physical Features of Advanced State-of-the-Art MODFETs.
3.5 High-Frequency Performance of MODFETs.
3.6 Materials Properties and Structure Optimization for HFETs.
Problems.
4 HETEROSTRUCTURE BIPOLAR TRANSISTORS.
4.1 Review of Bipolar Junction Transistors.
4.2 Emitter-Base Heterojunction Bipolar Transistors.
4.3 Base Transport Dynamics.
4.4 Nonstationary Transport Effects and Breakdown.
4.5 High-Frequency Performance of HBTs.
4.6 Materials Properties and Structure Optimization for HBTs .
Problems.
5 TRANSFERRED ELECTRON EFFECTS, NEGATIVE DIFFERENTIAL RESISTANCE, AND
DEVICES.
5.1 Introduction.
5.2 k-Space Transfer.
5.3 Real-Space Transfer.
5.4 Consequences of NDR in a Semiconductor.
5.5 Transferred Electron-Effect Oscillators: Gunn Diodes.
5.6 Negative Differential Resistance Transistors.
5.7 IMPATT Diodes.
Problems.
6 RESONANT TUNNELING AND DEVICES.
6.1 Physics of Resonant Tunneling: Qualitative Approach.
6.2 Physics of Resonant Tunneling: Envelope Approximation.
6.3 Inelastic Phonon Scattering Assisted Tunneling: Hopping Conduction.
6.4 Resonant Tunneling Diodes: High-Frequency Applications.
6.5 Resonant Tunneling Diodes: Digital Applications.
6.6 Resonant Tunneling Transistors.
Problems.
7 CMOS: DEVICES AND FUTURE CHALLENGES.
7.1 Why CMOS?
7.2 Basics of Long-Channel MOSFET Operation.
7.3 Short-Channel Effects.
7.4 Scaling Theory.
7.5 Processing Limitations to Continued Miniaturization.
Problems.
8 BEYOND CMOS: FUTURE APPROACHES TO COMPUTING HARDWARE.
8.1 Alternative MOS Device Structures: SOI, Dual-Gate FETs, and SiGe.
8.2 Quantum-Dot Devices and Cellular Automata.
8.3 Molecular Computing.
8.4 Field-Programmable Gate Arrays and Defect-Tolerant Computing.
8.5 Coulomb Blockade and Single-Electron Transistors.
8.6 Quantum Computing.
Problems.
9 MAGNETIC FIELD EFFECTS IN SEMICONDUCTORS.
9.1 Landau Levels.
9.2 Classical Hall Effect.
9.3 Integer Quantum Hall Effect.
9.4 Fractional Quantum Hall Effect.
9.5 Shubnikov-de Haas Oscillations.
Problems.
REFERENCES.
APPENDIX A: PHYSICAL CONSTANTS.
APPENDIX B: BULK MATERIAL PARAMETERS.
Table I: Silicon.
Table II: Ge.
Table III: GaAs.
Table IV: InP.
Table V: InAs.
Table VI: InN.
Table VII: GaN.
Table VIII: SiC.
Table IX: ZnS.
Table X: ZnSe.
Table XI : Al x Ga 1 fx As.
Table XI I : Ga 0:47 In 0:53 As.
Table XIII: Al 0:48 In 0:52 As.
Table XI V: Ga 0:5 In 0:5 P.
Table XV: Hg 0:70 Cd 0:30 Te.
APPENDIX C: HETEROJUNCTION PROPERTIES.
INDEX.
1 OVERVIEW OF SEMICONDUCTOR DEVICE TRENDS.
1.1 Moore's Law and Its Implications.
1.2 Semiconductor Devices for Telecommunications.
1.3 Digital Communications.
2 SEMICONDUCTOR HETEROSTRUCTURES.
2.1 Formation of Heterostructures.
2.2 Modulation Doping.
2.3 Two-Dimensional Subband Transport at Heterointerfaces.
2.4 Strain and Stress at Heterointerfaces.
2.5 Perpendicular Transport in Heterostructures and Superlattices.
2.6 Heterojunction Materials Systems: Intrinsic and Extrinsic Properties.
Problems.
3 HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS.
3.1 Motivation.
3.2 Basics of Heterostructure Field-Effect Transistors.
3.3 Simplified Long-Channel Model of a MODFET.
3.4 Physical Features of Advanced State-of-the-Art MODFETs.
3.5 High-Frequency Performance of MODFETs.
3.6 Materials Properties and Structure Optimization for HFETs.
Problems.
4 HETEROSTRUCTURE BIPOLAR TRANSISTORS.
4.1 Review of Bipolar Junction Transistors.
4.2 Emitter-Base Heterojunction Bipolar Transistors.
4.3 Base Transport Dynamics.
4.4 Nonstationary Transport Effects and Breakdown.
4.5 High-Frequency Performance of HBTs.
4.6 Materials Properties and Structure Optimization for HBTs .
Problems.
5 TRANSFERRED ELECTRON EFFECTS, NEGATIVE DIFFERENTIAL RESISTANCE, AND
DEVICES.
5.1 Introduction.
5.2 k-Space Transfer.
5.3 Real-Space Transfer.
5.4 Consequences of NDR in a Semiconductor.
5.5 Transferred Electron-Effect Oscillators: Gunn Diodes.
5.6 Negative Differential Resistance Transistors.
5.7 IMPATT Diodes.
Problems.
6 RESONANT TUNNELING AND DEVICES.
6.1 Physics of Resonant Tunneling: Qualitative Approach.
6.2 Physics of Resonant Tunneling: Envelope Approximation.
6.3 Inelastic Phonon Scattering Assisted Tunneling: Hopping Conduction.
6.4 Resonant Tunneling Diodes: High-Frequency Applications.
6.5 Resonant Tunneling Diodes: Digital Applications.
6.6 Resonant Tunneling Transistors.
Problems.
7 CMOS: DEVICES AND FUTURE CHALLENGES.
7.1 Why CMOS?
7.2 Basics of Long-Channel MOSFET Operation.
7.3 Short-Channel Effects.
7.4 Scaling Theory.
7.5 Processing Limitations to Continued Miniaturization.
Problems.
8 BEYOND CMOS: FUTURE APPROACHES TO COMPUTING HARDWARE.
8.1 Alternative MOS Device Structures: SOI, Dual-Gate FETs, and SiGe.
8.2 Quantum-Dot Devices and Cellular Automata.
8.3 Molecular Computing.
8.4 Field-Programmable Gate Arrays and Defect-Tolerant Computing.
8.5 Coulomb Blockade and Single-Electron Transistors.
8.6 Quantum Computing.
Problems.
9 MAGNETIC FIELD EFFECTS IN SEMICONDUCTORS.
9.1 Landau Levels.
9.2 Classical Hall Effect.
9.3 Integer Quantum Hall Effect.
9.4 Fractional Quantum Hall Effect.
9.5 Shubnikov-de Haas Oscillations.
Problems.
REFERENCES.
APPENDIX A: PHYSICAL CONSTANTS.
APPENDIX B: BULK MATERIAL PARAMETERS.
Table I: Silicon.
Table II: Ge.
Table III: GaAs.
Table IV: InP.
Table V: InAs.
Table VI: InN.
Table VII: GaN.
Table VIII: SiC.
Table IX: ZnS.
Table X: ZnSe.
Table XI : Al x Ga 1 fx As.
Table XI I : Ga 0:47 In 0:53 As.
Table XIII: Al 0:48 In 0:52 As.
Table XI V: Ga 0:5 In 0:5 P.
Table XV: Hg 0:70 Cd 0:30 Te.
APPENDIX C: HETEROJUNCTION PROPERTIES.
INDEX.