Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.
Produktdetails
Produktdetails
Mathematical and Analytical Techniques with Applications to Engineering
Stochastic Differential Equations with Jumps in Rd.- Martingale Theory and the Stochastic Integral for Point Processes.- Brownian Motion, Stochastic Integral and Ito's Formula.- Stochastic Differential Equations.- Some Useful Tools in Stochastic Differential Equations.- Stochastic Differential Equations with Non-Lipschitzian Coefficients.- Applications.- How to Use the Stochastic Calculus to Solve SDE.- Linear and Non-linear Filtering.- Option Pricing in a Financial Market and BSDE.- Optimal Consumption by H-J-B Equation and Lagrange Method.- Comparison Theorem and Stochastic Pathwise Control.- Stochastic Population Control and Reflecting SDE.- Maximum Principle for Stochastic Systems with Jumps.
Stochastic Differential Equations with Jumps in Rd.- Martingale Theory and the Stochastic Integral for Point Processes.- Brownian Motion, Stochastic Integral and Ito's Formula.- Stochastic Differential Equations.- Some Useful Tools in Stochastic Differential Equations.- Stochastic Differential Equations with Non-Lipschitzian Coefficients.- Applications.- How to Use the Stochastic Calculus to Solve SDE.- Linear and Non-linear Filtering.- Option Pricing in a Financial Market and BSDE.- Optimal Consumption by H-J-B Equation and Lagrange Method.- Comparison Theorem and Stochastic Pathwise Control.- Stochastic Population Control and Reflecting SDE.- Maximum Principle for Stochastic Systems with Jumps.
Stochastic Differential Equations with Jumps in Rd.- Martingale Theory and the Stochastic Integral for Point Processes.- Brownian Motion, Stochastic Integral and Ito's Formula.- Stochastic Differential Equations.- Some Useful Tools in Stochastic Differential Equations.- Stochastic Differential Equations with Non-Lipschitzian Coefficients.- Applications.- How to Use the Stochastic Calculus to Solve SDE.- Linear and Non-linear Filtering.- Option Pricing in a Financial Market and BSDE.- Optimal Consumption by H-J-B Equation and Lagrange Method.- Comparison Theorem and Stochastic Pathwise Control.- Stochastic Population Control and Reflecting SDE.- Maximum Principle for Stochastic Systems with Jumps.
Stochastic Differential Equations with Jumps in Rd.- Martingale Theory and the Stochastic Integral for Point Processes.- Brownian Motion, Stochastic Integral and Ito's Formula.- Stochastic Differential Equations.- Some Useful Tools in Stochastic Differential Equations.- Stochastic Differential Equations with Non-Lipschitzian Coefficients.- Applications.- How to Use the Stochastic Calculus to Solve SDE.- Linear and Non-linear Filtering.- Option Pricing in a Financial Market and BSDE.- Optimal Consumption by H-J-B Equation and Lagrange Method.- Comparison Theorem and Stochastic Pathwise Control.- Stochastic Population Control and Reflecting SDE.- Maximum Principle for Stochastic Systems with Jumps.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu