This dissertation presents a systematic development of a new thermal lattice Boltzmann multiphase model. Unlike conventional CFD methods, the lattice Boltzmann equation (LBE) method is based on microscopic models and mesoscopic kinetic equations in which the collective behavior of the particles in a system is used to simulate the continuum mechanics of the system. Due to this kinetic nature, the LBE method has been found to be particularly useful in applications involving interfacial dynamics and complex boundaries, e.g. multiphase or multicomponent flows. Based on the SC model, a new and generalized lattice Boltzmann model for simulating thermal two-phase flow is described. In this model, the SC model is used to simulate the fluid dynamics. The temperature field is simulated using the passive-scalar approach, i.e. through modeling the density field of an extra component, which evolves according to the advectiondiffusion equation. By coupling the fluid dynamics and temperature field through a suitably defined body force term, the thermal two-phase lattice Boltzmann model is obtained.