Dominique Bonneau, Aurelian Fatu, Dominique Souchet
Thermo-Hydrodynamic Lubrication in Hydrodynamic Bearings
Dominique Bonneau, Aurelian Fatu, Dominique Souchet
Thermo-Hydrodynamic Lubrication in Hydrodynamic Bearings
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.
Andere Kunden interessierten sich auch für
- Dominique BonneauMixed Lubrication in Hydrodynamic Bearings186,99 €
- Dominique BonneauHydrodynamic Bearings189,99 €
- Dominique BonneauInternal Combustion Engine Bearings Lubrication in Hydrodynamic Bearings189,99 €
- M Kemal OzgorenKinematics of General Spatial Mechanical Systems139,99 €
- J. Michael McCarthyGeometric Design of Linkages74,99 €
- Boling GuoQUANTUM HYDRODYNAMIC EQUATION AND ITS MATHEMATICAL THEORY119,99 €
- S. SieniutyczConservation Laws in Variational Thermo-Hydrodynamics42,99 €
-
-
-
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 192
- Erscheinungstermin: 15. September 2014
- Englisch
- Abmessung: 236mm x 157mm x 18mm
- Gewicht: 408g
- ISBN-13: 9781848216839
- ISBN-10: 1848216831
- Artikelnr.: 41026079
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 192
- Erscheinungstermin: 15. September 2014
- Englisch
- Abmessung: 236mm x 157mm x 18mm
- Gewicht: 408g
- ISBN-13: 9781848216839
- ISBN-10: 1848216831
- Artikelnr.: 41026079
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Dominique BONNEAU, Emeritus Professor, Prime Institute, University of Poitiers, France. Aurelian FATU, Associate Professor, Prime Institute, University of Poitiers, France. Dominique SOUCHET, Associate Professor, Prime Institute, University of Poitiers, France.
PERFACE ix
NOMENCLATURE xi
CHAPTER 1. THERMO-HYDRODYNAMIC LUBRICATION 1
1.1. Global thermal balance 1
1.2. Energy equation for the lubricant film 4
1.2.1. Particular case of non-filled film zones 5
1.3. Fourier equation inside the solids 6
1.4. Boundary conditions 7
1.4.1. Supply ducts 7
1.4.2. External walls of solids 8
1.4.3. Surfaces at solid truncations 9
1.4.4. Interfaces between film and solids 9
1.4.5. Supply orifices and grooves 11
1.4.6. Axial extremities of the lubricant film 17
1.5. Bibliography 17
CHAPTER 2. THREE-DIMENSIONAL THERMO-HYDRODYNAMIC MODEL 19
2.1. Model description 19
2.2. Discretization of the film energy equation 20
2.2.1. Stationary case 20
2.2.2. Transient case 27
2.3. Discretization of Fourier equation in the solids 38
2.4. Assembly of discretized equations for the film and the solids 40
2.5. Numerical behavior of the THD finite element model 43
2.5.1. Definition of reference problems 43
2.5.2. Behavior for a stationary case 45
2.5.3. Behavior for a transient case 57
2.5.4. Behavior in the case of a variation in the axial direction of the
film thickness 69
2.5.5. Evaluation of the global thermal method (GTM) 70
2.6. Bibliography 71
CHAPTER 3. SIMPLIFIED THERMO-HYDRODYNAMIC MODELS 73
3.1. Simplified THD model based on the Rhode and Li assumptions 73
3.1.1. Expression of the pressure and reduced Reynolds equation 73
3.1.2. Velocity components 75
3.1.3. Energy and Fourier equations 76
3.1.4. Discretization of equations 77
3.1.5. Evaluation of the method based on Rhode and Li assumptions 82
3.2. Simplified models for cyclic regimes 85
3.2.1. Model with the temperature averaged on the film thickness (ATM) 87
3.2.2. Model with a parabolic temperature profile across the film thickness
(PTM) 95
3.3. Bibliography 101
CHAPTER 4. COMPUTING THE THERMOELASTIC DEPENDENCY MATRICES 103
4.1. Computing the thermoelastic dependency matrices to be used for the
three-dimensional and Rhode and Li models 104
4.2. Computing the thermoelastic dependency matrices to be used for the
simplified models 105
4.2.1. Equation setting for compliance matrices when the thermal boundary
layer is modeled by a transfer coefficient 106
4.2.2. Equation setting for compliance matrices when the thermal boundary
layer is modeled by a Fourier series 107
4.3. Bibliography 110
CHAPTER 5. GENERAL ALGORITHM AND SOFTWARE FOR SOLVING BEARING LUBRICATION
PROBLEMS 111
5.1. Parameters and equations 111
5.1.1. The parameters that must be known before computing 111
5.1.2. The unknown parameters, objective of the computation 113
5.1.3. The equations to be solved 114
5.2. General algorithm 115
5.3. Solving finite element discretized EHD problem with the Newton-Raphson
method 117
5.3.1. Constitutive equations for the EHD problem 117
5.3.2. Discretized equations for the EHD problem 119
5.3.3. Solving algorithm for the EHD problem 129
5.4. Techniques for reducing the computation time 131
5.4.1. Non-systematic evaluation of the Jacobian matrix 131
5.4.2. Decomposition of the hydrodynamic pressure 132
5.5. Mesh refinement 138
5.5.1. Principle of the refinement method 138
5.5.2. Computation of the local compliance matrix 140
5.5.3. Expression of the shell surface deformation 141
5.6. Architecture of software for bearing lubrication computation 143
5.7. An example of TEHD computation software: ACCEL 145
5.8. Bibliography 147
APPENDIX 149
INDEX 153
NOMENCLATURE xi
CHAPTER 1. THERMO-HYDRODYNAMIC LUBRICATION 1
1.1. Global thermal balance 1
1.2. Energy equation for the lubricant film 4
1.2.1. Particular case of non-filled film zones 5
1.3. Fourier equation inside the solids 6
1.4. Boundary conditions 7
1.4.1. Supply ducts 7
1.4.2. External walls of solids 8
1.4.3. Surfaces at solid truncations 9
1.4.4. Interfaces between film and solids 9
1.4.5. Supply orifices and grooves 11
1.4.6. Axial extremities of the lubricant film 17
1.5. Bibliography 17
CHAPTER 2. THREE-DIMENSIONAL THERMO-HYDRODYNAMIC MODEL 19
2.1. Model description 19
2.2. Discretization of the film energy equation 20
2.2.1. Stationary case 20
2.2.2. Transient case 27
2.3. Discretization of Fourier equation in the solids 38
2.4. Assembly of discretized equations for the film and the solids 40
2.5. Numerical behavior of the THD finite element model 43
2.5.1. Definition of reference problems 43
2.5.2. Behavior for a stationary case 45
2.5.3. Behavior for a transient case 57
2.5.4. Behavior in the case of a variation in the axial direction of the
film thickness 69
2.5.5. Evaluation of the global thermal method (GTM) 70
2.6. Bibliography 71
CHAPTER 3. SIMPLIFIED THERMO-HYDRODYNAMIC MODELS 73
3.1. Simplified THD model based on the Rhode and Li assumptions 73
3.1.1. Expression of the pressure and reduced Reynolds equation 73
3.1.2. Velocity components 75
3.1.3. Energy and Fourier equations 76
3.1.4. Discretization of equations 77
3.1.5. Evaluation of the method based on Rhode and Li assumptions 82
3.2. Simplified models for cyclic regimes 85
3.2.1. Model with the temperature averaged on the film thickness (ATM) 87
3.2.2. Model with a parabolic temperature profile across the film thickness
(PTM) 95
3.3. Bibliography 101
CHAPTER 4. COMPUTING THE THERMOELASTIC DEPENDENCY MATRICES 103
4.1. Computing the thermoelastic dependency matrices to be used for the
three-dimensional and Rhode and Li models 104
4.2. Computing the thermoelastic dependency matrices to be used for the
simplified models 105
4.2.1. Equation setting for compliance matrices when the thermal boundary
layer is modeled by a transfer coefficient 106
4.2.2. Equation setting for compliance matrices when the thermal boundary
layer is modeled by a Fourier series 107
4.3. Bibliography 110
CHAPTER 5. GENERAL ALGORITHM AND SOFTWARE FOR SOLVING BEARING LUBRICATION
PROBLEMS 111
5.1. Parameters and equations 111
5.1.1. The parameters that must be known before computing 111
5.1.2. The unknown parameters, objective of the computation 113
5.1.3. The equations to be solved 114
5.2. General algorithm 115
5.3. Solving finite element discretized EHD problem with the Newton-Raphson
method 117
5.3.1. Constitutive equations for the EHD problem 117
5.3.2. Discretized equations for the EHD problem 119
5.3.3. Solving algorithm for the EHD problem 129
5.4. Techniques for reducing the computation time 131
5.4.1. Non-systematic evaluation of the Jacobian matrix 131
5.4.2. Decomposition of the hydrodynamic pressure 132
5.5. Mesh refinement 138
5.5.1. Principle of the refinement method 138
5.5.2. Computation of the local compliance matrix 140
5.5.3. Expression of the shell surface deformation 141
5.6. Architecture of software for bearing lubrication computation 143
5.7. An example of TEHD computation software: ACCEL 145
5.8. Bibliography 147
APPENDIX 149
INDEX 153
PERFACE ix
NOMENCLATURE xi
CHAPTER 1. THERMO-HYDRODYNAMIC LUBRICATION 1
1.1. Global thermal balance 1
1.2. Energy equation for the lubricant film 4
1.2.1. Particular case of non-filled film zones 5
1.3. Fourier equation inside the solids 6
1.4. Boundary conditions 7
1.4.1. Supply ducts 7
1.4.2. External walls of solids 8
1.4.3. Surfaces at solid truncations 9
1.4.4. Interfaces between film and solids 9
1.4.5. Supply orifices and grooves 11
1.4.6. Axial extremities of the lubricant film 17
1.5. Bibliography 17
CHAPTER 2. THREE-DIMENSIONAL THERMO-HYDRODYNAMIC MODEL 19
2.1. Model description 19
2.2. Discretization of the film energy equation 20
2.2.1. Stationary case 20
2.2.2. Transient case 27
2.3. Discretization of Fourier equation in the solids 38
2.4. Assembly of discretized equations for the film and the solids 40
2.5. Numerical behavior of the THD finite element model 43
2.5.1. Definition of reference problems 43
2.5.2. Behavior for a stationary case 45
2.5.3. Behavior for a transient case 57
2.5.4. Behavior in the case of a variation in the axial direction of the
film thickness 69
2.5.5. Evaluation of the global thermal method (GTM) 70
2.6. Bibliography 71
CHAPTER 3. SIMPLIFIED THERMO-HYDRODYNAMIC MODELS 73
3.1. Simplified THD model based on the Rhode and Li assumptions 73
3.1.1. Expression of the pressure and reduced Reynolds equation 73
3.1.2. Velocity components 75
3.1.3. Energy and Fourier equations 76
3.1.4. Discretization of equations 77
3.1.5. Evaluation of the method based on Rhode and Li assumptions 82
3.2. Simplified models for cyclic regimes 85
3.2.1. Model with the temperature averaged on the film thickness (ATM) 87
3.2.2. Model with a parabolic temperature profile across the film thickness
(PTM) 95
3.3. Bibliography 101
CHAPTER 4. COMPUTING THE THERMOELASTIC DEPENDENCY MATRICES 103
4.1. Computing the thermoelastic dependency matrices to be used for the
three-dimensional and Rhode and Li models 104
4.2. Computing the thermoelastic dependency matrices to be used for the
simplified models 105
4.2.1. Equation setting for compliance matrices when the thermal boundary
layer is modeled by a transfer coefficient 106
4.2.2. Equation setting for compliance matrices when the thermal boundary
layer is modeled by a Fourier series 107
4.3. Bibliography 110
CHAPTER 5. GENERAL ALGORITHM AND SOFTWARE FOR SOLVING BEARING LUBRICATION
PROBLEMS 111
5.1. Parameters and equations 111
5.1.1. The parameters that must be known before computing 111
5.1.2. The unknown parameters, objective of the computation 113
5.1.3. The equations to be solved 114
5.2. General algorithm 115
5.3. Solving finite element discretized EHD problem with the Newton-Raphson
method 117
5.3.1. Constitutive equations for the EHD problem 117
5.3.2. Discretized equations for the EHD problem 119
5.3.3. Solving algorithm for the EHD problem 129
5.4. Techniques for reducing the computation time 131
5.4.1. Non-systematic evaluation of the Jacobian matrix 131
5.4.2. Decomposition of the hydrodynamic pressure 132
5.5. Mesh refinement 138
5.5.1. Principle of the refinement method 138
5.5.2. Computation of the local compliance matrix 140
5.5.3. Expression of the shell surface deformation 141
5.6. Architecture of software for bearing lubrication computation 143
5.7. An example of TEHD computation software: ACCEL 145
5.8. Bibliography 147
APPENDIX 149
INDEX 153
NOMENCLATURE xi
CHAPTER 1. THERMO-HYDRODYNAMIC LUBRICATION 1
1.1. Global thermal balance 1
1.2. Energy equation for the lubricant film 4
1.2.1. Particular case of non-filled film zones 5
1.3. Fourier equation inside the solids 6
1.4. Boundary conditions 7
1.4.1. Supply ducts 7
1.4.2. External walls of solids 8
1.4.3. Surfaces at solid truncations 9
1.4.4. Interfaces between film and solids 9
1.4.5. Supply orifices and grooves 11
1.4.6. Axial extremities of the lubricant film 17
1.5. Bibliography 17
CHAPTER 2. THREE-DIMENSIONAL THERMO-HYDRODYNAMIC MODEL 19
2.1. Model description 19
2.2. Discretization of the film energy equation 20
2.2.1. Stationary case 20
2.2.2. Transient case 27
2.3. Discretization of Fourier equation in the solids 38
2.4. Assembly of discretized equations for the film and the solids 40
2.5. Numerical behavior of the THD finite element model 43
2.5.1. Definition of reference problems 43
2.5.2. Behavior for a stationary case 45
2.5.3. Behavior for a transient case 57
2.5.4. Behavior in the case of a variation in the axial direction of the
film thickness 69
2.5.5. Evaluation of the global thermal method (GTM) 70
2.6. Bibliography 71
CHAPTER 3. SIMPLIFIED THERMO-HYDRODYNAMIC MODELS 73
3.1. Simplified THD model based on the Rhode and Li assumptions 73
3.1.1. Expression of the pressure and reduced Reynolds equation 73
3.1.2. Velocity components 75
3.1.3. Energy and Fourier equations 76
3.1.4. Discretization of equations 77
3.1.5. Evaluation of the method based on Rhode and Li assumptions 82
3.2. Simplified models for cyclic regimes 85
3.2.1. Model with the temperature averaged on the film thickness (ATM) 87
3.2.2. Model with a parabolic temperature profile across the film thickness
(PTM) 95
3.3. Bibliography 101
CHAPTER 4. COMPUTING THE THERMOELASTIC DEPENDENCY MATRICES 103
4.1. Computing the thermoelastic dependency matrices to be used for the
three-dimensional and Rhode and Li models 104
4.2. Computing the thermoelastic dependency matrices to be used for the
simplified models 105
4.2.1. Equation setting for compliance matrices when the thermal boundary
layer is modeled by a transfer coefficient 106
4.2.2. Equation setting for compliance matrices when the thermal boundary
layer is modeled by a Fourier series 107
4.3. Bibliography 110
CHAPTER 5. GENERAL ALGORITHM AND SOFTWARE FOR SOLVING BEARING LUBRICATION
PROBLEMS 111
5.1. Parameters and equations 111
5.1.1. The parameters that must be known before computing 111
5.1.2. The unknown parameters, objective of the computation 113
5.1.3. The equations to be solved 114
5.2. General algorithm 115
5.3. Solving finite element discretized EHD problem with the Newton-Raphson
method 117
5.3.1. Constitutive equations for the EHD problem 117
5.3.2. Discretized equations for the EHD problem 119
5.3.3. Solving algorithm for the EHD problem 129
5.4. Techniques for reducing the computation time 131
5.4.1. Non-systematic evaluation of the Jacobian matrix 131
5.4.2. Decomposition of the hydrodynamic pressure 132
5.5. Mesh refinement 138
5.5.1. Principle of the refinement method 138
5.5.2. Computation of the local compliance matrix 140
5.5.3. Expression of the shell surface deformation 141
5.6. Architecture of software for bearing lubrication computation 143
5.7. An example of TEHD computation software: ACCEL 145
5.8. Bibliography 147
APPENDIX 149
INDEX 153