Michel Soustelle
Thermodynamic Modeling of Solid Phases
Michel Soustelle
Thermodynamic Modeling of Solid Phases
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book offers advanced students, in 7 volumes, successively characterization tools phases, the study of all types of phase, liquid, gas and solid, pure or multi-component, process engineering, chemical and electrochemical equilibria, the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention is given to the rigor of mathematical developments. This book focuses on solid phases.
Andere Kunden interessierten sich auch für
- Jürgen GmehlingChemical Thermodynamics for Process Simulation80,99 €
- Jürgen GmehlingChemical Thermodynamics76,99 €
- Walter SchreiterChemische Thermodynamik39,95 €
- Walter SchreiterChemische Thermodynamik44,95 €
- Bruno LinderThermodynamics and Introductory Statistical Mechanics146,99 €
- Frank WeinholdClassical and Geometrical Theory of Chemical and Phase Thermodynamics206,99 €
- Noam EliazPhysical Electrochemistry80,99 €
-
-
-
This book offers advanced students, in 7 volumes, successively characterization tools phases, the study of all types of phase, liquid, gas and solid, pure or multi-component, process engineering, chemical and electrochemical equilibria, the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention is given to the rigor of mathematical developments. This book focuses on solid phases.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- Artikelnr. des Verlages: 1W848218660
- 1. Auflage
- Seitenzahl: 266
- Erscheinungstermin: 5. Oktober 2015
- Englisch
- Abmessung: 240mm x 161mm x 19mm
- Gewicht: 556g
- ISBN-13: 9781848218666
- ISBN-10: 1848218664
- Artikelnr.: 43035544
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- Artikelnr. des Verlages: 1W848218660
- 1. Auflage
- Seitenzahl: 266
- Erscheinungstermin: 5. Oktober 2015
- Englisch
- Abmessung: 240mm x 161mm x 19mm
- Gewicht: 556g
- ISBN-13: 9781848218666
- ISBN-10: 1848218664
- Artikelnr.: 43035544
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Michel SOUSTELLE is a chemical engineer and Emeritus Professor at Ecole des Mines de Saint-Etienne in France. He taught chemical kinetics from postgraduate to Master degree level while also carrying out research in this topic.
PREFACE ix
NOTATIONS AND SYMBOLS xiii
CHAPTER 1. PURE CRYSTALLINE SOLIDS 1
1.1. Characteristic values of a solid 1
1.2. Effect of stress and Young's modulus 2
1.3. Microscopic description of crystalline solids 4
1.4. Partition function of vibration of a solid 5
1.4.1. Einstein's single-frequency model 5
1.4.2. Debye's frequency distribution model 6
1.4.3. Models with more complex frequency distributions 9
1.5. Description of atomic solids 10
1.5.1. Canonical partition function of an atomic solid 10
1.5.2. Helmholtz energy and internal energy of an atomic solid 11
1.6. Description of molecular solids 13
1.6.1. Partition function of molecular crystals 13
1.6.2. Thermodynamic functions of molecular solids 14
1.7. Description of an ionic solid 15
1.7.1. Crosslink energy of an ionic solid 15
1.7.2. Born/Haber cycle 22
1.7.3. Vibrational partition function and internal energy of an ionic solid 23
1.8. Description of a metallic solid 26
1.8.1. Sommerfeld's electron perfect gas model 27
1.8.2. The metallic bond and band theory 37
1.9. Molar specific heat capacities of crystalline solids 46
1.9.1. Contribution of the vibrational energy to the specific heat capacity at constant volume 46
1.9.2. Specific heat capacity of an atomic solid at constant volume 50
1.9.3. Specific heat capacity of a molecularor ionic-solid at constant volume 54
1.9.4. Conclusion as to the specific heat capacity of a crystalline solid 54
1.10. Thermal expansion of solids 55
1.10.1. Expansion coefficients 55
1.10.2. Origin of thermal expansion in solids 58
1.10.3. Quantum treatment of thermal expansion. Grüneisen parameter 62
1.10.4. Expansion coefficient of metals 68
CHAPTER 2. SOLID SOLUTIONS 71
2.1. Families of solid solutions 71
2.1.1. Substitutional solid solutions 72
2.1.2. Insertion solid solution 75
2.2. Order in solid solutions 82
2.2.1. Short-distance order 83
2.2.2. Long-distance order 87
2.3. Thermodynamic models of solid solutions 94
2.3.1. Determination of the Gibbs energy of mixing 94
2.3.2. The microscopic model of the perfect solution 100
2.3.3. Microscopic model of strictly-regular solutions 102
2.3.4. Microscopic model of the ideal dilute solution 104
2.3.5. Fowler and Guggenheim's quasi-chemical model of the solution 106
2.4. Thermodynamic study of the degree of order of an alloy 111
2.4.1. Hypotheses of the model: configuration energy 112
2.4.2. Expression of the configuration partition function 113
2.4.3. The Gorsky, Bragg and Williams model 114
2.4.4. The quasi-chemical model 120
2.4.5. Comparison of the models against experimental results 127
2.5. Determination of the activity of a component of a solid solution 132
2.5.1. Methods common to solid solutions and liquid solutions 134
2.5.2. Methods specific to solid solutions 140
CHAPTER 3. NON-STOICHIOMETRY IN SOLIDS 147
3.1. Structure elements of a solid 147
3.1.1. Definition 148
3.1.2. Symbolic representation of structure elements 149
3.1.3. Building unit of a solid 151
3.1.4. Description and composition of a solid 151
3.2. Quasi-chemical reactions in solids 153
3.2.1. Definition and characteristics of a quasi-chemical reaction between structure elements 153
3.2.2. Homogeneous quasi-chem
NOTATIONS AND SYMBOLS xiii
CHAPTER 1. PURE CRYSTALLINE SOLIDS 1
1.1. Characteristic values of a solid 1
1.2. Effect of stress and Young's modulus 2
1.3. Microscopic description of crystalline solids 4
1.4. Partition function of vibration of a solid 5
1.4.1. Einstein's single-frequency model 5
1.4.2. Debye's frequency distribution model 6
1.4.3. Models with more complex frequency distributions 9
1.5. Description of atomic solids 10
1.5.1. Canonical partition function of an atomic solid 10
1.5.2. Helmholtz energy and internal energy of an atomic solid 11
1.6. Description of molecular solids 13
1.6.1. Partition function of molecular crystals 13
1.6.2. Thermodynamic functions of molecular solids 14
1.7. Description of an ionic solid 15
1.7.1. Crosslink energy of an ionic solid 15
1.7.2. Born/Haber cycle 22
1.7.3. Vibrational partition function and internal energy of an ionic solid 23
1.8. Description of a metallic solid 26
1.8.1. Sommerfeld's electron perfect gas model 27
1.8.2. The metallic bond and band theory 37
1.9. Molar specific heat capacities of crystalline solids 46
1.9.1. Contribution of the vibrational energy to the specific heat capacity at constant volume 46
1.9.2. Specific heat capacity of an atomic solid at constant volume 50
1.9.3. Specific heat capacity of a molecularor ionic-solid at constant volume 54
1.9.4. Conclusion as to the specific heat capacity of a crystalline solid 54
1.10. Thermal expansion of solids 55
1.10.1. Expansion coefficients 55
1.10.2. Origin of thermal expansion in solids 58
1.10.3. Quantum treatment of thermal expansion. Grüneisen parameter 62
1.10.4. Expansion coefficient of metals 68
CHAPTER 2. SOLID SOLUTIONS 71
2.1. Families of solid solutions 71
2.1.1. Substitutional solid solutions 72
2.1.2. Insertion solid solution 75
2.2. Order in solid solutions 82
2.2.1. Short-distance order 83
2.2.2. Long-distance order 87
2.3. Thermodynamic models of solid solutions 94
2.3.1. Determination of the Gibbs energy of mixing 94
2.3.2. The microscopic model of the perfect solution 100
2.3.3. Microscopic model of strictly-regular solutions 102
2.3.4. Microscopic model of the ideal dilute solution 104
2.3.5. Fowler and Guggenheim's quasi-chemical model of the solution 106
2.4. Thermodynamic study of the degree of order of an alloy 111
2.4.1. Hypotheses of the model: configuration energy 112
2.4.2. Expression of the configuration partition function 113
2.4.3. The Gorsky, Bragg and Williams model 114
2.4.4. The quasi-chemical model 120
2.4.5. Comparison of the models against experimental results 127
2.5. Determination of the activity of a component of a solid solution 132
2.5.1. Methods common to solid solutions and liquid solutions 134
2.5.2. Methods specific to solid solutions 140
CHAPTER 3. NON-STOICHIOMETRY IN SOLIDS 147
3.1. Structure elements of a solid 147
3.1.1. Definition 148
3.1.2. Symbolic representation of structure elements 149
3.1.3. Building unit of a solid 151
3.1.4. Description and composition of a solid 151
3.2. Quasi-chemical reactions in solids 153
3.2.1. Definition and characteristics of a quasi-chemical reaction between structure elements 153
3.2.2. Homogeneous quasi-chem
PREFACE ix
NOTATIONS AND SYMBOLS xiii
CHAPTER 1. PURE CRYSTALLINE SOLIDS 1
1.1. Characteristic values of a solid 1
1.2. Effect of stress and Young's modulus 2
1.3. Microscopic description of crystalline solids 4
1.4. Partition function of vibration of a solid 5
1.4.1. Einstein's single-frequency model 5
1.4.2. Debye's frequency distribution model 6
1.4.3. Models with more complex frequency distributions 9
1.5. Description of atomic solids 10
1.5.1. Canonical partition function of an atomic solid 10
1.5.2. Helmholtz energy and internal energy of an atomic solid 11
1.6. Description of molecular solids 13
1.6.1. Partition function of molecular crystals 13
1.6.2. Thermodynamic functions of molecular solids 14
1.7. Description of an ionic solid 15
1.7.1. Crosslink energy of an ionic solid 15
1.7.2. Born/Haber cycle 22
1.7.3. Vibrational partition function and internal energy of an ionic solid 23
1.8. Description of a metallic solid 26
1.8.1. Sommerfeld's electron perfect gas model 27
1.8.2. The metallic bond and band theory 37
1.9. Molar specific heat capacities of crystalline solids 46
1.9.1. Contribution of the vibrational energy to the specific heat capacity at constant volume 46
1.9.2. Specific heat capacity of an atomic solid at constant volume 50
1.9.3. Specific heat capacity of a molecularor ionic-solid at constant volume 54
1.9.4. Conclusion as to the specific heat capacity of a crystalline solid 54
1.10. Thermal expansion of solids 55
1.10.1. Expansion coefficients 55
1.10.2. Origin of thermal expansion in solids 58
1.10.3. Quantum treatment of thermal expansion. Grüneisen parameter 62
1.10.4. Expansion coefficient of metals 68
CHAPTER 2. SOLID SOLUTIONS 71
2.1. Families of solid solutions 71
2.1.1. Substitutional solid solutions 72
2.1.2. Insertion solid solution 75
2.2. Order in solid solutions 82
2.2.1. Short-distance order 83
2.2.2. Long-distance order 87
2.3. Thermodynamic models of solid solutions 94
2.3.1. Determination of the Gibbs energy of mixing 94
2.3.2. The microscopic model of the perfect solution 100
2.3.3. Microscopic model of strictly-regular solutions 102
2.3.4. Microscopic model of the ideal dilute solution 104
2.3.5. Fowler and Guggenheim's quasi-chemical model of the solution 106
2.4. Thermodynamic study of the degree of order of an alloy 111
2.4.1. Hypotheses of the model: configuration energy 112
2.4.2. Expression of the configuration partition function 113
2.4.3. The Gorsky, Bragg and Williams model 114
2.4.4. The quasi-chemical model 120
2.4.5. Comparison of the models against experimental results 127
2.5. Determination of the activity of a component of a solid solution 132
2.5.1. Methods common to solid solutions and liquid solutions 134
2.5.2. Methods specific to solid solutions 140
CHAPTER 3. NON-STOICHIOMETRY IN SOLIDS 147
3.1. Structure elements of a solid 147
3.1.1. Definition 148
3.1.2. Symbolic representation of structure elements 149
3.1.3. Building unit of a solid 151
3.1.4. Description and composition of a solid 151
3.2. Quasi-chemical reactions in solids 153
3.2.1. Definition and characteristics of a quasi-chemical reaction between structure elements 153
3.2.2. Homogeneous quasi-chem
NOTATIONS AND SYMBOLS xiii
CHAPTER 1. PURE CRYSTALLINE SOLIDS 1
1.1. Characteristic values of a solid 1
1.2. Effect of stress and Young's modulus 2
1.3. Microscopic description of crystalline solids 4
1.4. Partition function of vibration of a solid 5
1.4.1. Einstein's single-frequency model 5
1.4.2. Debye's frequency distribution model 6
1.4.3. Models with more complex frequency distributions 9
1.5. Description of atomic solids 10
1.5.1. Canonical partition function of an atomic solid 10
1.5.2. Helmholtz energy and internal energy of an atomic solid 11
1.6. Description of molecular solids 13
1.6.1. Partition function of molecular crystals 13
1.6.2. Thermodynamic functions of molecular solids 14
1.7. Description of an ionic solid 15
1.7.1. Crosslink energy of an ionic solid 15
1.7.2. Born/Haber cycle 22
1.7.3. Vibrational partition function and internal energy of an ionic solid 23
1.8. Description of a metallic solid 26
1.8.1. Sommerfeld's electron perfect gas model 27
1.8.2. The metallic bond and band theory 37
1.9. Molar specific heat capacities of crystalline solids 46
1.9.1. Contribution of the vibrational energy to the specific heat capacity at constant volume 46
1.9.2. Specific heat capacity of an atomic solid at constant volume 50
1.9.3. Specific heat capacity of a molecularor ionic-solid at constant volume 54
1.9.4. Conclusion as to the specific heat capacity of a crystalline solid 54
1.10. Thermal expansion of solids 55
1.10.1. Expansion coefficients 55
1.10.2. Origin of thermal expansion in solids 58
1.10.3. Quantum treatment of thermal expansion. Grüneisen parameter 62
1.10.4. Expansion coefficient of metals 68
CHAPTER 2. SOLID SOLUTIONS 71
2.1. Families of solid solutions 71
2.1.1. Substitutional solid solutions 72
2.1.2. Insertion solid solution 75
2.2. Order in solid solutions 82
2.2.1. Short-distance order 83
2.2.2. Long-distance order 87
2.3. Thermodynamic models of solid solutions 94
2.3.1. Determination of the Gibbs energy of mixing 94
2.3.2. The microscopic model of the perfect solution 100
2.3.3. Microscopic model of strictly-regular solutions 102
2.3.4. Microscopic model of the ideal dilute solution 104
2.3.5. Fowler and Guggenheim's quasi-chemical model of the solution 106
2.4. Thermodynamic study of the degree of order of an alloy 111
2.4.1. Hypotheses of the model: configuration energy 112
2.4.2. Expression of the configuration partition function 113
2.4.3. The Gorsky, Bragg and Williams model 114
2.4.4. The quasi-chemical model 120
2.4.5. Comparison of the models against experimental results 127
2.5. Determination of the activity of a component of a solid solution 132
2.5.1. Methods common to solid solutions and liquid solutions 134
2.5.2. Methods specific to solid solutions 140
CHAPTER 3. NON-STOICHIOMETRY IN SOLIDS 147
3.1. Structure elements of a solid 147
3.1.1. Definition 148
3.1.2. Symbolic representation of structure elements 149
3.1.3. Building unit of a solid 151
3.1.4. Description and composition of a solid 151
3.2. Quasi-chemical reactions in solids 153
3.2.1. Definition and characteristics of a quasi-chemical reaction between structure elements 153
3.2.2. Homogeneous quasi-chem